• Title/Summary/Keyword: 차량 주행안전성

Search Result 413, Processing Time 0.035 seconds

Analysis on Running Safety for KTX Vehicle (KTX차량의 주행 안전성 해석)

  • Kim, Jae-Chul;Ham, Young-Sam
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.473-479
    • /
    • 2007
  • Lateral vibration at the tail of KTX train was found during the acceptance test. In order to settle the problem of lateral vibration, the wheel conicity was changed 1/40 to 1/20. However, we should evaluate the running safety of vehicle with 1/20 wheel conicity because modification of wheel conicity may cause the running performance to be worse and critical speed to reduce. In this paper, we calculate critical speed of KTX bogie as wheel conicity increase and analyze the running safety for KTX that has 20 car trainset formation using VAMPIRE. and compare with the test results of KHST to validate analysis results on high speed line. A analysis results show that critical speed of 0.3 wheel conicity is over 375km/h and curving performance of 1/20wheel conicity is better than 1/40. Also, we examinate the running performance of KTX to check out possibility to increase speed of KTX on conventional line. A analysis results show that it is possible to increase up to 10% the speed of KTX on tangent line but KTX on a curved line should be operated with the speed of conventional train.

Evaluation of Freeway Mobile Work Zone Safety using Driving Simulations (주행 시뮬레이션을 활용한 고속도로 이동공사 안전성평가)

  • Park, Hyunjin;Oh, Cheol;Moon, Jaepil
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.6
    • /
    • pp.124-140
    • /
    • 2017
  • There exists a limitation to provide proper advance information for safe maneuvering through guidance and caution signs in freeway mobile work zones, unlike fixed work zones. Although a work-protection vehicle is currently deployed at the rear of the work vehicle, more active countermeasures to prevent crashes are required. The purpose of this study was to propose a method to evaluate the safety in mobile work zones and to present effective countermeasures. Driving simulation experiments were conducted to analyze characteristics of driver's behavior in mobile and fixed work zones. Safety distance index (SDI) based on the comparison of stopping distances of a work-protection vehicle and a following subject vehicle was used to evaluate traffic safety. More dangerous driving behavior was observed in the mobile work zone. Especially, it was identified that the lane-change of vehicles following the work- protection vehicle was late. Therefore, it is necessary to actively introduce methods to provide warning information so that the driver can recognize the work-protection vehicle in advance and carry out appropriate evasive maneuvers.

Reliable Multicast MAC Protocol for Cooperative Autonomous Vehicles (협력적 자율 차량을 위한 신뢰성있는 멀티케스트 MAC 프로토콜)

  • Kim, Jungsook;Kim, Juwan;Choi, Jeongdan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.3
    • /
    • pp.180-187
    • /
    • 2014
  • This paper introduces reliable multicast MAC protocol for cooperative unmanned vehicles. cooperative unmanned vehicles communicate with infrastructure and other unmanned vehicles in order to increase driving safety. They exchange information related to driving and thus it requires real-time and reliable multicast. However, the international vehicular communication standard, IEEE 802.11p WAVE, does not provide a reliable multicast scheme on the MAC layer. To address the problems of reliability, we propose a reliable multicast protocol called WiVCL, which avoids contention and collision. Our evaluation shows that the WiVCL achieves a high degree of reliability and real-time features.

A Study of Running Safety According to the Section Shape of an F10/F12 Turnout (F10/F12 분기기에서의 단면 형상별 주행안전성 연구)

  • Kim, Sung-Jong;Eom, Beom-Gyu;Kang, Bu-Byoung;Lee, Hi-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.6
    • /
    • pp.591-598
    • /
    • 2011
  • When a vehicle passes through a turnout, it is necessary for the changes in lateral force to be minimized to ensure the safe running of the vehicle. Therefore, the analysis of the interaction between the vehicle and the turnout is crucial for estimating the lateral force and the derailment coefficient on the turnout. In this paper, the effect of the variation of section shape on the running safety of a vehicle was investigated by changing the shape of the point part and the crossing part. The tongue rail length of the point part and nose rail height of the crossing part of an F10/F12 turnout were changed, and the running safety of the vehicle was analyzed.

Analysis on Safety and Ride Comfort of KTX According to Track Surface (고저틀림에 따른 KTX 주행거동 특성 분석)

  • Choi, Il-Yoon;Koo, Dong-Hoe;Hwang, Seok-Yeol;Lim, Yun-Sik
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.6
    • /
    • pp.583-588
    • /
    • 2010
  • Track irregularities is one of key factors influencing running behavior of train. In order to ensure safety and ride comfort, it is highly important that relationship between track irregularity and running behavior of vehicle is identified and the criteria for track irregularities is adequately established. Numerical analysis was conducted to investigate influence of surface on running behavior of KTX and various wavelength and amplitude of surface were considered in numerical analysis. Derailment, lateral load, bogie acc., body acc. of numerical analysis results were investigated to evaluate the effect on track profile on safety and ride comfort of KTX.

Analysis of Running Safety and Ride Comfort According to the Shape of Transition Curve (완화곡선형상별 차량주행안전성 및 승차감 분석)

  • Choi, Il-Yoon;Um, Ju-Hwan;Kim, Man-Cheol;Park, Chan-Kyoung
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.5
    • /
    • pp.509-515
    • /
    • 2010
  • Primary function of a transition curve is to accomplish gradual transition from the straight to circular curve, so that curvature changes from zero to a finite value. The transition curve enhances the running safety and ride comfort of the vehicle in curve. There are a couple of transition curve such as clothoid, cubic parabola and cosinusoidal curve, etc. In this study, running behaviors of cubic parabola and cosinusoidal curve were investigated and compared by numerical analysis result using VAMPIRE program. Ride comforts for an individual transition curve were evaluated for each transition curve and running behavior and safety were also evaluated to compare the capacity of transition curves.

Comparative Analysis of the Psychological State and Driving Safety for Driving within the Platoons of Trucks by Drivers Driving Performance (화물차 군집주행 간격에 따른 운전자의 운전수행능력별 심리상태 및 주행안전성 비교 연구)

  • Park, Hyun jin;Park, Jae beom;Lee, Ki young;Song, Chang jun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.147-161
    • /
    • 2021
  • The purpose of this study was to investigate the psychological state and driving safety of drivers driving around the truck platoon driving. Using the driving simulator, the experimental environment was constructed with the situation of changing lanes to the platoon and driving within the platoon. We tried to qualitatively and quantitatively analyze the driver's psychological state and driving safety through simulation driving experiments. As a result, in the case of the older driver group, there were many cases where they judged themselves to be driving safely, even though they were driving dangerously in the actual lane change to the platoon or driving within the platoon. In particular, this group showed that the narrower the distance between vehicles, the greater the misrecognition. The results of this study are expected to be useful in deriving the optimum interval when the interval between platooning of trucks needs to be temporarily extended.

VENTOS Simulation for Platoon Driving Considering ISO/PAS 21448 Standard (ISO/PAS 21448 표준을 고려한 군집주행의 VENTOS 시뮬레이션)

  • Kim, Youngjae;Kwon, YongGyun;Kim, Dong Hwan;Hong, Jang-Eui
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.11a
    • /
    • pp.698-701
    • /
    • 2020
  • 여러 대의 자율주행 차량이 하나의 그룹을 형성하여 주행하는 군집주행은 미래 고속도로 교통 시스템의 핵심 기술이다. 이러한 군집주행에서 발생할 수 있는 다양한 상황에서의 안전을 고려하는 일은 단독 자율 주행에서의 경우보다 더 어렵다. 다양한 군집주행의 안전 위협 요인 중, 의도하지 않은 동작으로부터 자율주행 차량의 안전성을 향상하는 방법을 가이드하기 위하여 새로운 표준 ISO/PAS 21448이 제정되었다. 본 논문에서는 ISO/PAS 21448 표준이 다루는 시나리오를 통해 군집주행에서 발생할 수 있는 의도하지 않은 상황의 극복을 위한 방법을 제시하였다. 특히 군집주행 시뮬레이터인 VENTOS를 이용하여 본 논문에서 제시하는 방법이 안전한 군집주행이라는 목표를 달성할 수 있음을 확인하였다.

Traffic Accidents Scenarios Based on Autonomous Vehicle Functional Safety Systems (자율주행차량 기능안전 시스템 기반 사고 시나리오 도출)

  • Heesoo Kim;Yongsik You;Hyorim Han;Min-je Cho;Tai-jin Song
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.6
    • /
    • pp.264-283
    • /
    • 2023
  • Unlike conventional vehicle traffic accidents, autonomous vehicles traffic accidents can be caused by various factors, including technical problems, the environment, and driver interaction. With the future advances in autonomous driving technology, new issues are expected to emerge in addition to the existing accident causes, and various scenario-based approaches are needed to respond to them. This study developed autonomous vehicle traffic accident scenarios by collecting autonomous driving accident reports, CA DMV collision reports, autonomous driving mode disengagement reports, and autonomous driving actual accident videos. The scenarios were derived based on the functional safety system failure modes of ISO 26262 and attempted to reflect the various issues of autonomous driving functions. The autonomous vehicle scenarios derived through this study are expected to play an essential role in preventing and preparing for various autonomous vehicle traffic accidents in the future and improving the safety of autonomous driving technology.

Analysis of Traffic Flow Based on Autonomous Vehicles' Perception of Traffic Safety Signs in Urban Roads (도시부 도로 내 자율주행차량의 교통안전표지 정보 인지 시점에 따른 교통류 분석)

  • Jongho Kim;Hyeokjun Jang;Eum Han;Eunjeong Ko
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.148-162
    • /
    • 2023
  • The objective of this study is to derive the appropriate perception location for changes in driving behavior of autonomous vehicles in urban road environments based on traffic safety signs. For this purpose, 32 types of signs that induce changes in driving behavior were selected from currently used traffic safety signs and classified as three types according to changes in driving behavior. Based on this, three scenarios were designed: stop, speed change, and lane change scenarios. These were used to confirm the impact on traffic flow. As a result of the analysis, it was found that each scenario needs to receive information on traffic safety signs in advance to ensure changes in traffic flow and safety. Consequently, the appropriate perception location can be used as a basis for establishing standards for delivering message sets to autonomous vehicles or revising traffic safety signs for them. In addition, this study is expected to contribute to the establishment of safe and efficient driving strategies on urban roads as autonomous vehicles are introduced in the future.