• Title/Summary/Keyword: 차량 종류

Search Result 358, Processing Time 0.024 seconds

A Message Broadcast Scheme using Contention Window in Vehicular Ad-hoc Network (차량 애드혹 네트워크에서 경쟁윈도우를 이용한 메시지 브로드캐스트 기법)

  • Kim, Tae-Hwan;Hong, Won-Kee;Kim, Hie-Cheol
    • Journal of KIISE:Information Networking
    • /
    • v.34 no.6
    • /
    • pp.423-434
    • /
    • 2007
  • Vehicular ad-hoc network (VANET), a kind of mobile ad-hoc network (MANET), is a key technology for building intelligent transportation system (ITS). VANET is automatically and temporarily established through vehicle-to-vehicle communication without network infrastructure. It has the characteristics that frequent changes of network topology and node density are occurred and messages are disseminated through several relay nodes in the network. Due to frequent change of network topology and node density, however, VANET requires an effective relay node selection scheme to disseminate messages through the multi-hop broadcast. In this paper, we propose a contention window based multi-hop broadcast scheme for VANET. Each node has an optimized contention window and competes with each other for a relay node. The experimental results show that the proposed scheme has a better performance than the distance-based deterministic broadcast scheme in terms of message propagation delay and network traffic.

A Robust Scheme for Emergency Message Delivery in Vehicle Communications on Freeway (고속도로상의 차량간 통신에서 에러에 강한 긴급메시지 전달 기법)

  • Park, Jeong-Seo;Park, Tae-Keun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12A
    • /
    • pp.1113-1121
    • /
    • 2010
  • The Vehicle Safety Communications (VSC) is one of VANET applications for preventing vehicle accidents, and it utilizes vehicle-to-vehicle communication to exchange emergency messages. To propagate such messages in VSC, several schemes based on selective flooding have been proposed. Their common idea is that an emergency message is relayed by one of vehicles receiving the message. However, the schemes do not consider the transmission errors and duplications of an emergency event. In the schemes, if there are transmission errors and a vehicle detects a hazard, there may be vehicles which fail to receive an emergency message. If k vehicles detect a hazard, k emergency messages are created and propagated. The duplications of an event increase reliability of the message delivery but decrease efficiency. In this paper, we propose an emergency message delivery scheme which is efficient and robust to transmission errors. Our proposed scheme utilizes clustering for massage aggregation and retransmissions in a cluster. It also uses an acknowledgment mechanism for reliable inter-cluster communication. Our simulation results show that the proposed scheme outperforms Least Common Neighbor Flooding which is one of the selective flooding schemes.

Magnetic Signals Analysis for Vehicle Detection Sensor and Magnetic Field Shape (자기신호분석을 통한 차량의 감지센서와 자기형상에 관한 연구)

  • Choi, Hak-Yun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.2
    • /
    • pp.349-354
    • /
    • 2015
  • This paper is about utilizing magnetic sensor to measure magnetic signal and analyze the form of magnetic signal for vehicle detection. For magnetic sensor, MR sensor from Honeywell company was used, and Helmholtz coil of which 3 axis' length is 1.2 m was manufactured to check the capability of the sensor and estimate its ability to detect the magnetic field. Vehicle detection was performed in following steps: installing sensor in road lane and non-road lane; estimating magnetic field when the vehicle is run by the driver; and estimating magnetic field of 7 different vehicles with different sizes. Also, sensor was installed at SUV and small-sized vehicle's park and non-park area to analyze the form of magnetic field. Lastly, the form of magnetic field made by different parts of the vehicle was analyzed. Based on the analysis, the form of magnetic field's magnetic peak value was bigger for road lane than non-road lane, complicated form was useful to distinguish the road lane above the installed sensor and the location of the running car, and the types of vehicle could be sorted because the variance of the magnetic field was bigger for bigger size of the vehicle. Also, it was confirmed that the forms of vehicle in parts-by-parts estimates.

Vehicle Recognition with Recognition of Vehicle Identification Mark and License Plate (차량 식별마크와 번호판 인식을 통한 차량인식)

  • Lee Eung-Joo;Kim Sung-Jin;Kwon Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.11
    • /
    • pp.1449-1461
    • /
    • 2005
  • In this paper, we propose a vehicle recognition system based on the classification of vehicle identification mark and recognition of vehicle license plate. In the proposed algorithm, From the input vehicle image, we first simulate preprocessing procedures such as noise reduction, thinning etc., and detect vehicle identification mark and license plate region using the frequency distribution of intensity variation. And then, we classify extracted vehicle candidate region into identification mark, character and number of vehicle by using structural feature informations of vehicle. Lastly, we recognize vehicle informations with recognition of identification mark, character and number of vehicle using hybrid and vertical/horizontal pattern vector method. In the proposed algorithm, we used three properties of vehicle informations such as Independency property, discriminance property and frequency distribution of intensity variation property. In the vehicle images, identification mark is generally independent of the types of vehicle and vehicle identification mark. And also, the license plate region between character and background as well as horizontal/vertical intensity variations are more noticeable than other regions. To show the efficiency of the propofed algorithm, we tested it on 350 vehicle images and found that the propofed method shows good Performance regardless of irregular environment conditions as well as noise, size, and location of vehicles.

  • PDF

Performance of IEEE 802.11b WLAN Standard at In-Vehicle Environment for Intelligent U-Car System (지능형 U-Car에서 IEEE 802.11b을 이용한 차량 내 데이터 무선 랜 전송 성능 분석)

  • Lee Seung-Hwan;Heo Soo-Jung;Park Yong-Wan;Lee Sang-Shin;Lee Dong-Hahk;Yu Jae-Hwang
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.9 s.351
    • /
    • pp.80-87
    • /
    • 2006
  • In this paper, we analyze the performance of IEEE 802.11b WLAN communication between access point(AP) and mobile equipment(ME) in 2.4 GHz band with noise and interference factors. WLAN communication at in-vehicle environment is assumed as the communication between main vehicle controller and electronic device such as sensor, ECU (Electrical Control Unit) in vehicle on telematics field for implementing wireless vehicle control system. Received interference level from other system's mobile equipment in the same band and automobile noise from each part of vehicle can be the main factors that can cause increasing error rate of control signal. With these (actors, we focus on the Eb/No the BER performance of WLAN for analyzing the characteristic of interference factors by the measured bit error rate.

Cases of applying battery to rolling stock (철도차량용 축전지 적용 사례)

  • Kim, Sang-Woong;Kim, Shin-Gug;Ahn, Hong-Kwan;Kim, Jea-Gi
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.413-422
    • /
    • 2011
  • A battery is an important part of the component, as a power source of the control of rolling stock at starting movement or emergency control. Now widely used batteries are Ni-Cd batteries and lead accumulators, and these are increasingly getting smaller and lighter. In addition, the electric capacity required is increasing, due to the development of electronic control technology of rolling stock. Therefore, various kinds of high-efficiency battery are considered for the new routes' rolling stock, but rolling stock's batteries should be fully tested to prove safety and also have no difficulty in terms of management, so because of the requirement, it is difficult to be in practical application. In this paper, we will survey cases of applying battery to rolling stock and then we will review whether there is any problem about safety and performance, management to discuss future trend of batteries.

  • PDF

Damage Evaluation for the Column of Underpass Considering the Collision of a Vehicle (차량의 충돌을 고려한 지하차도 기둥의 손상 평가)

  • Park, Jang Ho;Kim, Young Woong;Park, Jaegyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.169-176
    • /
    • 2015
  • The protection facilities against the collision of the vehicle should be considered in the design of the bridge by the regulations, but there is no regulation against the collision of the vehicle in the design of the column of underpass. Impact analysis for the column of underpass was performed in order to evaluate the damage of the structure by the collision of the vehicle. Impact analysis was performed according to the various parameters such as material properties of the structure and types and velocities of the vehicle. From the numerical results, the structural damage for the column of underpass by the collision of the vehicle was evaluated and considerations in the design for a column of underpass against the collision of the vehicle were examined.

A Study on Improving Power Quality by Real-time Reactive Power/Power Factor Compensating Equipment at Substation in Marshalling Yard (전기철도 차량기지 변전소의 실시간 무효전력/역률 보상설비 적용에 따른 전력품질 개선에 관한 연구)

  • Park, Soo-Cheol;Song, Joong-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.10
    • /
    • pp.58-67
    • /
    • 2006
  • In this paper, real-time reactive power/power factor compensating equipment is suggested for improving power quality at electrical railway's substation in marshalling yard and designing optimal capacity of compensating equipment for actual apply at current marshalling yard. For this purpose, several kind of real-time reactive power/power factor compensating equipments are introduced and SVG(Static Var Generator) as optimal compensating equipment that is suitable for load characteristics of substation in marshalling yard is suggested. This paper shows proper simulations by suggested equipment using PSIM software and describe basic compensating principle and simulation results. Optimal capacity design for applying current marshalling yard is based on real measured power quality data. Power quality improvement that is performed by SVG as real-time reactive power/power factor compensating equipment is estimated at electrical railway's substation in marshalling yard. As reference, real-time reactive power/power factor compensating equipment is composed by voltage source inverter and DC capacitors.