• Title/Summary/Keyword: 차량 안정성 제어

Search Result 155, Processing Time 0.035 seconds

On the speaker's position estimation using TDOA algorithm in vehicle environments (자동차 환경에서 TDOA를 이용한 화자위치추정 방법)

  • Lee, Sang-Hun;Choi, Hong-Sub
    • Journal of Digital Contents Society
    • /
    • v.17 no.2
    • /
    • pp.71-79
    • /
    • 2016
  • This study is intended to compare the performances of sound source localization methods used for stable automobile control by improving voice recognition rate in automobile environment and suggest how to improve their performances. Generally, sound source location estimation methods employ the TDOA algorithm, and there are two ways for it; one is to use a cross correlation function in the time domain, and the other is GCC-PHAT calculated in the frequency domain. Among these ways, GCC-PHAT is known to have stronger characteristics against echo and noise than the cross correlation function. This study compared the performances of the two methods above in automobile environment full of echo and vibration noise and suggested the use of a median filter additionally. We found that median filter helps both estimation methods have good performances and variance values to be decreased. According to the experimental results, there is almost no difference in the two methods' performances in the experiment using voice; however, using the signal of a song, GCC-PHAT is 10% more excellent than the cross correlation function in terms of the recognition rate. Also, when the median filter was added, the cross correlation function's recognition rate could be improved up to 11%. And in regarding to variance values, both methods showed stable performances.

Improved Real-Time Variable Speed Limits for a Stable Controlling of the Freeway (안정적인 고속도로 통제를 위한 향상된 실시간 가변 속도 제한)

  • Jeon, Soobin;Han, Young Tak;Seo, Dong Mahn;Jung, Inbum
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.9
    • /
    • pp.405-418
    • /
    • 2016
  • Recently, many researchers have studied the VSL decision method using traffic information in multiple detector zones. However, this method selects incorrect VSL starting points, leading to the selection of the wrong speed control zone and calculation of the wrong VSL, causing traffic congestion. Eventually, the Unstable VSL system causes more congestion on the freeway. This paper proposes an improved VSL algorithm stably operated in multiple detector zones on the Korea highway. The proposed algorithm selects a preliminary VSL start station (VSS) expected to end the congestion using the acceleration of stations. It also determines the VSS at each congestion area. Finally, it calculates the VSL relative to the determined VSS and controls the vehicles that enters the traffic congestion zone. The developed strategy is compared with Real-time Variable Speed Limits for Urban Freeway (RVSL) to test the stability and efficiency of the proposed algorithm. The results show that the proposed algorithm resolves the problems of the existing algorithm, demonstrated by the correct VSS decision and the reduction of total travel time by 1-2 minutes.

Steering and Driver Model to Evaluate the Handling and Stability Characteristics (조종안정성평가 시험을 위한 조향 및 운전자모델)

  • Tak, Tae-oh;Choi, Jae-min
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.241-248
    • /
    • 1998
  • In this study, a modeling method of power-assisted steering systems and driver models for vehicle dynamic analysis using AUTODYN7 is presented. Pressure-flow relations of flow control valve are derived, and the equations of motion of a steering gear are obtained. Combining pressure-flow relations and equations of motion, the steering force can be represented as a function of steering wheel angle or torque. Driver model was modeled based on a PID controller and forward target method. With the steering systems and driver model, various driving tests are conducted using AUTODYN7.

  • PDF

Design of a Robust Controller to Enhance Lateral Stability of a Four Wheel Steer Vehicle with a Nonlinear Observer (비선형 관측기를 이용한 사륜조향 차량의 횡방향 안정성 강화를 위한 강인 제어기 설계)

  • Song, Jeong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.120-127
    • /
    • 2007
  • This paper describes the development of a nonlinear observer for four wheel steer (4WS) vehicle. An observer is designed to estimate the vehicle variables difficult to measure directly. A brake yaw motion controller (BYMC), which uses a PID control method, is also proposed for controlling the brake pressure of the rear and inner wheels to enhance lateral stability. It induces the yaw rate to track the reference yaw rate, and it reduces a slip angle on a slippery road. The braking and steering performances of the anti-lock brake system (ABS) and BYMC are evaluated for various driving conditions, including straight, J-turn, and sinusoidal maneuvers. The simulation results show that developed ABS reduces the stopping distance and increases the longitudinal stability. The observer estimates velocity, slip angle, and yaw rate of 4WS vehicle very well. The results also reveal that the BYMC improves vehicle lateral stability and controllability when various steering inputs are applied.

Cyclic Executive for Autonomous Driving with Real-Time Smart Cruise Control (순환실행체제를 이용한 무인 자율주행 실시간 스마트 크루즈 컨트롤)

  • Lee, Jaemyoun;Kang, Kyungtae;Noh, Dong Kun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • In recent years, much attention has been paid to the development of intelligent vehicles that integrate automotive technology into the information technology, with the aim of improving user friendliness and stability. The representative function is a autonomous driving and a cruise control. In designing such vehicles, it is critical to address the real-time issues (i.e., real-time vehicle control and timely response). However, previous research excluded the real-time scheduling. We develop a model car with unmanned cruise control, design the real-time scheduler using cyclic executive to easily adapt the model car, and provide some insight into potential solutions based on various experiments.

Vehicle Steering System Analysis for Enhanced Path Tracking of Autonomous Vehicles (자율주행 경로 추종 성능 개선을 위한 차량 조향 시스템 특성 분석)

  • Kim, Changhee;Lee, Dongpil;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.2
    • /
    • pp.27-32
    • /
    • 2020
  • This paper presents steering system requirements to ensure the stabilized lateral control of autonomous driving vehicles. The two main objectives of a lateral controller in autonomous vehicles are maintenance of vehicle stability and tracking of the desired path. Even if the desired steering angle is immediately determined by the upper level controller, the overall controller performance is greatly influenced by the specification of steering system actuators. Since one of the major inescapable traits that affects controller performance is the time delay of the steering actuator, our work is mainly focused on finding adequate parameters of high level control algorithm to compensate these response characteristics and guarantee vehicle stability. Actual vehicle steering angle response was obtained with Electric Power Steering (EPS) actuator test subject to various longitudinal velocity. Steering input and output response analysis was performed via MATLAB system identification toolbox. The use of system identification is advantageous since the transfer function of the system is conveniently obtained compared with methods that require actual mathematical modeling of the system. Simulation results of full vehicle model suggest that the obtained tuning parameter yields reduced oscillation and lateral error compared with other cases, thus enhancing path tracking performance.

Estimation Algorithm of Vehicle Roll Angle and Control Strategy of Roll Mitigation Force Distribution (차량 롤 각 추정 알고리즘 및 롤 저감력 분배 제어 전략)

  • Chung, Seunghwan;Lee, Hyeongcheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.6
    • /
    • pp.633-641
    • /
    • 2015
  • The ROM (roll over mitigation) system is a next-generation suspension system that can improve vehicle-driving stability and ride comfort. Currently, mass-produced safety systems, such as ESC (electronic stability control) and ECS (electronic control suspension), enable measurements of longitudinal and lateral acceleration as well as yaw rate through inertial sensor clusters, but they lack direct measurements of the roll angle. Therefore, in this paper, a roll angle estimation algorithm from ESC system sensors and tire normal force has been proposed. Furthermore, this study presents a method for roll over mitigation force distribution between the front and rear of a ROM system. Performance and reliability of the roll angle estimation and roll over mitigation force distribution were investigated through simulations. The simulation results showed that the proposed control algorithm and strategy are reliable during vehicle rollovers.

Experimental Vibration Analysis of Vehicle Body-Engine Systems by Transfer Function Synthesis Method (전달함수합성법에 의한 차체-엔진계의 실험적 진동해석)

  • 정의봉;안세진;김원영
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.289-295
    • /
    • 1995
  • 구조물의 동적부하에 대한 동적변형 응답을 정확히 예측하고, Over Design이나 Under Design이 아닌 합리적인 설계방안의 개발은 중요한 과제이다. 동적강도해석이나 소음 승차감과 같은 진동 및 충격에 기인하는 제반 문제를 복잡한 구조물을 대상으로 합리적으로 처리하기 위한 Dynamic Design Analysis는 높은 신뢰성의 추구와 더불어 필요불가결한 기술이 되고 있다. 동적해석 방법으로는 현재 유한요소법이 널리 사용되고 있으며 여러 종류의 범용 프로그램들이 보급되어 있는 실정이다. 그러나 특히 동적문제에 있어서는 형상이나 거동이 복잡한 구조물의 경우, 또는 차량의 차체와 같이 많은 장착물이 부착된 경우에는 유한요소법의 적용이 곤란하여, 지금까지 대처할 수 있는 유용한 방법이 없었다. 따라서 비교적 용이하고 간단하게 적용가능한 진동실험을 기초로 한 구조물의 동적 응답해석 및 설계 방안의 개발이 필요하다. 본 연구에서는 진동시험으로 얻어진 부분구조물의 응답특성과 결합특성으로부터 결합 후의 응답특성을 예측할 수 있는 방법을 전달함수합성이론을 기초로하여 프로그래밍 package화 한다. 그리고 평판구조물에 대하여 진동시험과 컴퓨터 시뮬레이션을 통하여 개발된 방법의 타당성을 검증한다. 또한 실제 차량에서 차체만의 진동시험과 엔진의 자유진동시험에 의한 시험데이터로부터 차체와 엔진이 마운트 결합된 후의 진동특성을 예측한다. 진동시험시에 입력과 출력에 노이즈가 필연적으로 혼입되어 주파수응답함수의 크기(magnitude)와 위상(phase)을 왜곡시킨다. 특히 위상의 왜곡은 복소수연산을 하는 전달함수합성법의 결과에 중요한 영향을 미치게 된다. 본 연구에서는 데이타 획득시 입력과 출력의 시간지연으로 생기는 위상왜곡을 보정하는 방법을 제시하고, 그 개선 정도를 조사한다.는 소견의 확실도로서 가능성을 표현한 것이다. 예를 들면, 진동진폭 스펙트럼상에 2X 성분이 상당히 크게 나타나 정렬불량의 가능성이 0.7 정도라고 판정하는 것 등은 이러한 수치적진리치를 이용하는 방법이다. 그러나 상기의 수치적 표현만으로는 확실도를 한개의 수치로서 대표하게 하는 것은 진단의 정밀도에 문제가 있을 것으로 생각된다. 따라서 언어적진리치가 도입되어 [상당히 확실], [확실], [약간 확실] 등의 언어적인 표현을 이용하여 애매성을 표현하게 되었다. 본 논문에서는 간이진단 결과로부터 추출된 애매한 진단결과중에서 가장 가능성이 높은 이상원인을 복수로 선정하고, 여러 종류의 수치화할 수 없는 언어적(linguistic)인 정보ㄷㄹ을 if-then 형식의 퍼지추론으로 종합하는 회전기계의 이상진단을 위한 정밀진단 알고리즘을 제안하고 그 유용성을 검토한다. 존재하여도 모우드 변수들을 항상 정확하게 구할 수 있으며, 또한 알고리즘의 안정성이 보장된 것이다.. 여기서는 실험실 수준의 평 판모델을 제작하고 실제 현장에서 이루어질 수 있는 진동제어 구조물에 대 한 동적실험 및 FRS를 수행하는 과정과 동일하게 따름으로써 실제 발생할 수 있는 오차나 error를 실험실내의 차원에서 파악하여 진동원을 있는 구조 물에 대한 진동제어기술을 보유하고자 한다. 이용한 해마의 부피측정은 해마경화증 환자의 진단에 있어 육안적인 MR 진단이 어려운 제한된 경우에만 실제적 도움을 줄 수 있는 보조적인 방법으로 생각된다.ofile whereas relaxivity at high field is not affected by τS. On the other hand, the change in τV does not affect low field profile but strongly in fluences on bot

  • PDF

A Study on Integrated Control System Design of Active Rear Wheel Steering and Yaw-Moment Control Systems (능동 후륜조타와 요우 모멘트의 협조제어에 관한 연구)

  • Park, J.H.;Pak, J.W.
    • Journal of Power System Engineering
    • /
    • v.8 no.4
    • /
    • pp.57-63
    • /
    • 2004
  • Conventionally, 2WS is used for vehicle steering, which can only steering front wheel. In case of trying to high speed lane change or cornering through this kind of vehicle equipped 2WS, it may occur much of Yaw moment. On the other hand, 4WS makes decreasing of Yawing Moment, outstandingly, so it is possible to support vehicle movement stable. And conventional ABS and TCS can only possible to control the longitudinal movement of braking equipment and drive which can only available to control of longitudinal direction. There after new braking system ESP was developed, which controls both of longitudinal and lateral, with adding of the function of controlling Active Yaw Moment. On this paper, we show about not only designing of improved braking and steering system through establishing of the integrated control system design of 4WS and ESP but also designing of the system contribute to precautious for advanced vehicle stability problem.

  • PDF

A study on the effect of Octane-Number on combustion characteristics and vehicle performance (옥탄가 차이가 연소특성 및 차량 성능에 미치는 영향 연구)

  • Noh, Kyeong-ha;Kim, Jung-hwan;Lee, Min-ho;Kim, Ki-ho
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.41-50
    • /
    • 2016
  • This study examined the combustion characteristics and emissions, fuel economy, acceleration by selecting the two fuel with octane number difference to investigate the effect on the combustion characteristics and performance of the vehicle according to the octane number. First, a single-cylinder engine was used for the combustion characteristic experiment, Of the fuel, which is distributed on the market by the selection of two different octane fuel it is performed experiments. Single cylinder experiment examined the combustion characteristics that appear when you gradually advancing the ignition timing by the ignition timing and air-fuel ratio control for each fuel and through an output, emissions, pressure, hence examined the correlation between by octane number. In addition through the actual vehicle compared the changes in the fuel octane number difference, through acceleration tests examined the impact of the octane number requirements for high-performance segment. As a result, fuel of high octane number in accordance with the ignition timing the advancing showed a slightly stable combustion characteristics, a slight increase occurred in the acceleration test and power. However, both fuel does not significantly differ from the current mode, simulating the urban and highway fuel efficiency. Therefore, the operating conditions of the vehicle currently being sold on the Effects of high-octane fuel. fuel efficiency was found insufficient.