• Title/Summary/Keyword: 차량 내 센서네트워크

Search Result 27, Processing Time 0.038 seconds

차량 내 무선센서 네트워크 기술

  • Lee, Seung-Jun;Yun, Du-Seop;Kim, Do-Hyeon
    • Journal of the KSME
    • /
    • v.54 no.12
    • /
    • pp.32-35
    • /
    • 2014
  • 이 글에서는 기존에 사용되고 있는 유선 네트워크로 차량 내 각종 센서들을 구성하였던 방식이 아닌, 무선 네트워크를 통해 차량 내 센서들을 통신 및 제어하는 방법에 대해 소개하고자 한다.

  • PDF

A Study on Integration of Wired and Wireless Vehicular Networking Service (유무선 통합형 차량 내 네트워크 응용 서비스 연구)

  • Xia, Sun;Park, Sang-Hyun;Kwon, Young-Goo
    • 한국IT서비스학회:학술대회논문집
    • /
    • 2009.05a
    • /
    • pp.509-512
    • /
    • 2009
  • 최근 차량용 IT 기술이 발달함에 따라 네비게이션, 위치추적, 인터넷 접수, 원격 차량 진단, 사고감지, 긴급구난, 교통정보 등을 제공하는 서비스들이 등장하고 있다. 또한 차량의 편의성과 안정성을 추구함과 동시에 친환경 등에 대한 요구도 증가하고 있다. 그리고 최근 차량 상호간 정보의 교환이 더욱 필요해짐에 따라 차량간의 무선 통신 기능이 중요해지고 있으며 차량 내의 네트워크 기술에 대한 연구도 필요하다. 현재 차량 내 네트워크로는 CAN, LIN, MOST등의 유선으로 된 버스 시스템을 중심으로 한 차량 제어 시스템과 멀티미디어 시스템으로 크게 구분할 수 있다. 그러나 자동차 내에 장치 배선이 복잡해짐에 따라 차량의 무게 증가, 고장율의 증가, 연비 저하 등으로 이어지고 있다. 이러한 문제를 보완하기 위해 차량 내에 무선 센서 네트워크 시스템과의 통합 개발이 요구되고 있다. 본 논문에서는 빠르게 발전하고 있는 차량 내 네트워크에 대한 기술개발 동향을 분석하고, 유무선 통합형 차량 내 네트워크 응용 서비스들을 제시하고자 한다.

  • PDF

Design and Implementation of Automatic System in Car Based on Zigbee (지그비 기반 차량 자동화 시스템의 설계 및 구현)

  • Kim, Nam-Hee;Lee, Jong-Chan
    • Convergence Security Journal
    • /
    • v.8 no.2
    • /
    • pp.27-34
    • /
    • 2008
  • In this paper, we designed and implemented mobile object automatic system based on senor networks for telematics. For developing this system, we gather the various sensing data through wireless communication method using zigbee sensor networks and analyze them in monitoring equipment. And we enable the driver to recognize the car state information on the whole by interfacing analyzed data to telematics unit. And, we implemented automatic controller that can control temperature and humidity in car automatically by actuating air conditioner based on the data that was monitored throughout temperature sensor, humidity sensor and brightness sensor based on sensor networks.

  • PDF

Implementation of Wireless Automatic Control System for Vehicle Interior Environment (차량 내부 환경 제어용 무선 자동화 시스템 구현)

  • Cho, Hae-Seong;Cho, Ju-Phil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.5
    • /
    • pp.287-291
    • /
    • 2010
  • In this paper, we designed and implemented mobile object automatic system based on senor networks for telematics. For developing this system, we gather the various sensing data through wireless communication method using zigbee sensor networks and analyze them in monitoring equipment. And we enable the driver to recognize the car state information on the whole by interfacing analyzed data to telematics unit. And, we implemented automatic controller that can control temperature and humidity in car automatically by actuating air conditioner based on the data that was monitored throughout temperature sensor, humidity sensor and brightness sensor based on sensor networks.

Smart Navigation System Implementation by MOST Network of In-Vehicle (차량 내 MOST Network를 이용한 지능형 Navigation 구현)

  • Kim, Mi-Jin;Baek, Sung-Hyun;Jang, Jong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.11
    • /
    • pp.2311-2316
    • /
    • 2009
  • Lately, in the automotive market appeared keywords such as convenience, safety in presentation and increase importance of pan of vehicle. Accordingly, the use of many electronic devices was required essentially and communication between electronic devices is being highlighted. Various devices such as controllers, sensors and multimedia device(audio, speakers, video, navigation) in-vehicle connected car network such as CAN, MOST. Modem in-vehicle network managed and operated as purpose of each other. In this Paper, intelligent car navigation considering convenience and safety implement on MOST Network and present system to control CAN Network in vehicle.

Implementation of Campus Car Location Management System Using Received Signal Strength of Wireless Sensor Node (무선 센서노드의 전파수신강도(RSS)를 이용한 캠퍼스 차량 위치관리 시스템 구현)

  • Choi, Jun-Young;Kim, Hyun-Joong;Yang, Hyun-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.473-476
    • /
    • 2008
  • USN(Ubiquotous Sensor Network) has been applied to various fields of industries such as logistics, environment management, traffic management, as well as IT industries including home network and telematics. Among the important techniques required to implement aforementioned applications, location management scheme is essential. In this paper, we proposed and implemented a new location measurement scheme based on RSSI of sensor node for campus car location management.

  • PDF

Analysis of Transmission Delay and Fault Recovery Performance with EtherCAT for In-Vehicle Network (차량내 통신을 위한 EtherCAT 네트워크의 전송지연 및 고장복구 특성 분석)

  • Kim, Dong-Gil;Jo, Youngyun;Lee, Dongik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.11
    • /
    • pp.1036-1044
    • /
    • 2012
  • Thanks to progressive development of IT technology, the number of intelligent devices communicating each other through an In-Vehicle Network(IVN) has been steadily increasing. It is expected that the required network bandwidth and network nodes for vehicle control in 2015 will be increased by two times and one and half times as compared to in 2010, respectively. As a result, many researchers in automotive industry has showed a significant interest on industrial Ethernets, such as EtherCAT and TTEthernet. This paper addresses an analysis on transmission delay and fault recovery performance with an EtherCAT network which is being considered as an IVN. A mathematical model based on the analysis is verified through a set of experiments using an experimental network setup.

Design and Analysis of Multiple Mobile Router Architecture for In-Vehicle IPv6 Networks (차량 내 IPv6 네트워크를 위한 다중 이동 라우터 구조의 설계와 분석)

  • Paik Eun-Kyoung;Cho Ho-Sik;Choi Yang-Hee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.2 no.2 s.3
    • /
    • pp.43-54
    • /
    • 2003
  • As the demand for ubiquitous mobile wireless Internet grows, vehicles are receiving a lot of attention as new networking platforms. The demand for 4G all-IP networks encourages vehicle networks to be connected using IPv6. By means of network mobility (NEMO) support, we can connect sensors, controllers, local ,servers as well as passengers' devices of a vehicle to the Internet through a mobile router. The mobile router provides the connectivity to the Internet and mobility transparency for the rest of the mobile nodes of an in-vehicle nv6 network. So, it is .important for the mobile router to assure reliable connection and a sufficient data rate for the group of nodes behind it. To provide reliability, this paper proposes an adaptive multihoming architecture of multiple mobile routers. Proposed architecture makes use of different mobility characteristics of different vehicles. Simulation results with different configurations show that the proposed architecture increases session preservation thus increases reliability and reduces packet loss. We also show that the proposed architecture is adaptive to heterogeneous access environment which provide different access coverage areas and data rates. The result shows that our architecture achieves sufficient data rates as well as session preservation.

  • PDF

Positioning by using Speed and GeoMagnetic Sensor Data base on Vehicle Network (차량 네트워크 기반 속도 및 지자기센서 데이터를 이용한 측위 시스템)

  • Moon, Hye-Young;Kim, Jin-Deog;Yu, Yun-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2730-2736
    • /
    • 2010
  • Recently, various networks have been introduced in the car of the internal and external sides. These have been integrated by one HMI(Human Machine Interface) to control devices of each network and provide information service. The existing vehicle navigation system, providing GPS based vehicle positioning service, has been included to these integrated networks as a default option. The GPS has been used to the most universal device to provide position information by using satellites' signal. But It is impossible to provide the position information when the GPS can't receive the satellites' signal in the area of tunnel, urban canyon, or forest canopy. Thus, this paper propose and implement the method of measuring vehicle position by using the sensing data of internal CAN network and external Wi-Fi network of the integrated car navigation circumstances when the GPS doesn't work normally. The results obtained by implementation shows the proposed method works well by map matching.

Smart Navigation System Implementation by MOST Network of In-Vehicle (차량 내 MOST Network를 이용한 지능형 Navigation 구현)

  • Kim, Mi-jin;Baek, Sung-hyun;Jang, Jong-wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.82-85
    • /
    • 2009
  • Lately, in the automotive market appeared keywords such as convenience, safety in presentation and increase importance of part of vehicle. Accordingly, the use of many electronic devices was required essentially and communication between electronic devices is being highlighted. Various devices such as controllers, sensors and multimedia device(audio, speakers, video, navigation) in-vehicle connected car network such as CAN, MOST. Modern in-vehicle network managed and operated as purpose of each other. In this Paper, intelligent car navigation considering convenience and safety implement on MOST Network and present system to control CAN Network in vehicle.

  • PDF