• 제목/요약/키워드: 차량번호판 추출

검색결과 155건 처리시간 0.024초

주차 회전율의 추출 (Extraction of Parking Turnover Ratio)

  • 신성윤;이현창;안우영
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2016년도 제53차 동계학술대회논문집 24권1호
    • /
    • pp.109-110
    • /
    • 2016
  • 본 논문에서는 효율적으로 주차 공간을 확보와 주차장 성능을 향상을 위한 방법을 조사하였다. 이러한 방법으로는 차량 번호판 조사를 이용하여 주차 회전율을 구하는 방법이 있었다. 본 연구로 효율적으로 주차장을 사용하고 있는지를 판단할 수 있다. 또한 차량의 주차를 하여 잘 소통되는지를 알 수 있었다.

  • PDF

번호판 영역 검출을 위한 지역특징 분류 방법 (Local Descriptor Classification Method for License Plate Detection)

  • 홍원주;김민우;오일석
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(A)
    • /
    • pp.466-468
    • /
    • 2011
  • 본 논문은 영상 획득 환경이 자유로운 상황에서 차량 번호판 영역을 검출하기 위한 새로운 방법을 제안한다. 입력 영상에서 SIFT 지역특징을 추출하고 미리 학습한 분류기를 통해 각 지역특징이 번호판 내부에 속하는지 번호판 외부에 속하는지를 분류한다. 번호판 내부로 분류된 지역특징이 밀집한 영역이 번호판 영역으로 검출된다. 실험을 통해 제안하는 지역특징 분류 방법이 높은 성능으로 번호판 내/외부를 분류함을 보인다.

딥러닝 SW 기술을 이용한 임베디드형 융합 CCTV 카메라 (Convergence CCTV camera embedded with Deep Learning SW technology)

  • 손경식;김종원;임재현
    • 한국융합학회논문지
    • /
    • 제10권1호
    • /
    • pp.103-113
    • /
    • 2019
  • 차량 번호판 인식 카메라는 차량 번호판 내 문자와 숫자의 인식을 위하여 대상 차량의 이미지 취득을 목적으로 하는 전용 카메라를 말하며 대부분 단독 사용보다는 서버와 영상 분석 모듈과 결합된 시스템의 일부로 적용된다. 그러나 차량 번호판 인식을 위한 시스템 구축을 위해서는 취득 영상 관리 및 분석 지원을 위한 서버와 문자, 숫자의 추출 및 인식을 위한 영상 분석 모듈을 함께 구성하여야 하므로 구축을 위한 설비가 필요하고 초기 비용이 많이 든다는 문제점이 있다. 이에 본 연구에서는 카메라의 기능을 차량 번호판 인식에만 한정하지 않고 방범 기능을 함께 수행할 수 있도록 확장하고 카메라 단독으로도 두가지 기능 수행이 가능한 Edge Base의 임베디드형 융합 카메라를 개발한다. 임베디드형 융합 카메라는 선명한 영상 취득 및 빠른 데이터 전송을 위해 고해상도 4K IP 카메라를 탑재하고 오픈소스 신경망 알고리즘 기반의 다중 객체 인식을 위한 딥러닝 SW인 YOLO를 적용하여 차량 번호판 영역을 추출한 후 차량 번호판 내의 문자와 숫자를 검출하고 검출 정확도와 인식 정확도를 검증하여 CCTV 방범 기능과 차량 번호 인식 기능이 가능한지를 확인 하였다.

주차장 자동차번호 인식 시스템에 관한 연구 (A Study of Car Plate Recognition System on The Park)

  • 신강호
    • 한국컴퓨터정보학회논문지
    • /
    • 제8권4호
    • /
    • pp.87-91
    • /
    • 2003
  • 본 논문에서는 현재 주차장에서 사용되는 입출 차량의 관리를 정기권 카드나 티켓발행기와 병행하여 사용될 수 있는 자동차 번호 인식 시스템을 개발하였다. 주차장은 차량의 흐름을 원활하고 신속하게 처리해야 하기 때문에 많은 자동차 번호 인식시스템을 도입했으나 운영 면에서 여러 가지 문제점을 가지고 있었다. 본 논문에서는 이러한 단점을 보완하기 위하여 기존의 시스템을 바탕으로 유동적인 시스템을 개발하였다. 자동차 번호 인식시스템은 주차장에 설치될 경우 99%의 성능을 가져야 하지만 날씨의 변화와 계절이 변동함에 따라 많은 영향을 받고 있다. 따라서 본 논문에서는 4계절과 날씨에 민감함을 고려하여 차량번호판 영역을 히스토그램 모폴로지를 사용하여 번호판 영역을 추출하고 신경망을 사용하여 숫자만을 인식하는 시스템을 개발하였다.

  • PDF

자동차 번호판 인식 및 스마트폰을 활용한 객체지향 설계 기반의 효율적인 차량 관리 시스템 (An Efficient Car Management System based on an Object-Oriented Modeling using Car Number Recognition and Smart Phone)

  • 정세훈;권용욱;심춘보
    • 한국전자통신학회논문지
    • /
    • 제7권5호
    • /
    • pp.1153-1164
    • /
    • 2012
  • 본 논문에서는 자동차 번호판 인식 및 스마트폰을 활용한 객체 지향 설계 기반의 효율적인 차량 관리 시스템을 제안한다. 제안하는 시스템은 수리 차량 입고 시 IP카메라를 이용하여 실시간으로 자동차 번호판을 인식하고 인식된 차량의 기존 수리 이력 정보를 DID에 출력한다. 또한 차량 정비사가 수리 차량을 정비하는 동안 IP 카메라를 통해 수리 과정을 동영상으로 촬영하며, 촬영된 동영상 중에 프레임을 추출하여 사용자의 스마트폰에 이미지를 전송함으로써 고객 차량 확인 및 수리 이력 관리 기능을 제공한다. 사용자의 편의성을 제공하기 위해 웹 및 모바일 기반의 사용자 인터페이스를 제공한다. 제안하는 시스템의 설계는 구현 후 재사용성과 확장성을 고려하여 모듈을 세분화한 객체 지향 기반의 소프트웨어 설계 모델링을 적용한다. 제안하는 시스템을 통해 차량 수리 센터 및 정비업체는 업무의 효율성을 향상시킬 수 있으며, 아울러 차량 수리를 요청한 고객의 신뢰도를 높일 수 있다.

숫자 영역 탐색에 기반한 자동차 번호판 추출 (Car License Plate Extraction Based on Detection of Numeral Regions)

  • 이득용;오일석
    • 한국ITS학회 논문지
    • /
    • 제7권1호
    • /
    • pp.59-67
    • /
    • 2008
  • 이 논문은 우리나라 차량 영상에서 번호판 영역을 추출하는 알고리즘을 제안한다. 이 논문의 아이디어는 차량 영상에서 네 개의 숫자를 찾고 그 정보를 이용하여 번호판 영역을 분할하는 것이다. 이 방법으로 번호판 영역을 찾으면 네 개 숫자 영역도 더불어 얻게 되는 장점을 가진다. 첫 단계는 입력된 영상에서 적절한 크기의 연결 요소를 검출하고 이들을 군집화 한다. 둘째 군집화 된 연결요소들을 바탕으로 숫자 네 개 (4-digits)후보를 생성한다. 세 번째 단계는 4-digits후보들을 인식하여 숫자일 신뢰도를 측정한다. 마지막으로 후보 영역 중 신뢰도가 가장 높은 영역을 번호판 영역으로 추출한다 신뢰도를 얻기 위해 Perfect Metrics 분류 알고리즘을 사용하였다. 제안하는 방법을 주간 영상 4600장과 야간 영상 264장으로 테스트 한 결과 각각 97.23%와 95.45%의 검출률과 0.09%와 0.11%의 오검출률을 얻었다.

  • PDF

고유 숫자를 이용한 번호판 숫자 인식 (Recognition of Numeric Characters in License Plates using Eigennumber)

  • 박경수;강현철;이완주
    • 대한전자공학회논문지SP
    • /
    • 제44권3호
    • /
    • pp.1-7
    • /
    • 2007
  • 자동차 번호판을 인식하기 위해서는 차량 영상에서 번호판을 추출하고, 추출된 번호판으로부터 문자를 분리하여야 하고, 각 문자들에 대해서 특징 벡터를 추출하고 신경망을 이용하여 인식한다. 이때 인식의 기준이 되는 특징 벡터의 선정은 데이터양의 감소뿐 만 아니라 인식 성능에 많은 영향을 미친다. 본 논문에서는 숫자를 고유 숫자(eigennumber)의 선형 조합으로 분해하여 특징 벡터를 추출하는 새로운 특징 벡터 추출 기법을 제안하고, 자동차 번호판의 숫자 인식에 적용함으로써 그 유효성을 검증하였다. 실험 결과, 고유 숫자 공간상에서 다층 퍼셉트론 신경망을 이용하여 95.3%의 인식률을 보였고, 이는 일반적인 메쉬 특징과 비교하여 약 5%의 향상된 결과이다.

HSV 색 공간을 이용한 야간 차량 검출시스템 (Vehicle Tracking System using HSV Color Space at nighttime)

  • 박호식
    • 한국정보전자통신기술학회논문지
    • /
    • 제8권4호
    • /
    • pp.270-274
    • /
    • 2015
  • 본 논문에서는 HSV 색 공간을 이용한 야간 차량의 검출 시스템을 제안한다. 주정차 감시등 도로변에서 자동차를 감시하는 경우 자동차 번호판 추출하는 것이 중요하다. 일반적으로 번호판 추출을 위해서는 원거리에서 자동차 검출후 Pan-Tilt-Zoom 카메라로 자동차를 일정한 크기로 확대한 영상을 획득하여 번호판을 추출한다. 그리고 자동차 검출 및 추적을 위해 Mean-Shift 혹은 Optical Flow 알고리듬이 많이 이용되고 있다. 그러나 이러한 알고리즘은 주간에는 성공적으로 자동차를 검출 및 추적 할수 있었으나 야간에는 검출 및 추적에 어려움이 있었다. 그래서 본 논문에서는 입력 영상을 HSV 색 공간으로 변환하면 자동차의 전조등 혹은 후미등의 위치가 두드러지게 나타나는 것을 이용하여 자동차의 위치를 검출하였다. 실험 결과 정면 차량의 경우 93.9%, 후면 차량의 경우 97.7%의 차량을 검출하여 제안된 방법이 야간 차량 검출에 효율적임을 증명하였다.

휴대단말기 영상에서의 기하학적 정보를 이용한 차량 번호판 인식 (Recognition of Car License Plate Using Geometric Information from Portable Device Image)

  • 염희정;은성종;황보택근
    • 한국콘텐츠학회논문지
    • /
    • 제10권10호
    • /
    • pp.1-8
    • /
    • 2010
  • 현재 카메라로 입력된 문자 영상 처리를 위한 기술 개발이 국내외에서 활발히 이루어지고 있으나 낮은 정확도나 처리시간이 많이 걸리는 문제점 등으로 실용화 비율은 현저히 낮다. 본 논문에서는 휴대단말기 카메라에서 얻은 영상으로 기하학적 정보를 이용한 차량 번호판 인식 방법을 제안한다. 휴대폰 영상의 낮은 해상도와 부족한 명암대비, 각도 차이 등을 고려한 전처리 작업 수행 후 투영에지 누적 계산을 통해 추출된 번호판 영역에서 체인코드와 Thickness 정보를 이용하여 문자를 인식한다. 제안된 알고리즘은 기존의 차량 번호판 인식 알고리즘의 문제점과 휴대단말기 영상 처리라는 점 등을 고려하여 가볍고 처리 시간을 단축시켰으며, 실험 결과 95%의 문자 인식 성공률을 얻었다. 향후 연구로 원거리 영상이나 모션블러가 가미된 영상에서의 번호판 인식 알고리즘을 모색할 예정이다.

스마트 차량 관리 시스템을 위한 HSV 색상모델 기반의 키 프레임 추출 기법 (A Key-Frame Extraction Method based on HSV Color Model for Smart Vehicle Management System)

  • 권용욱;정세훈;박동국;심춘보
    • 한국전자통신학회논문지
    • /
    • 제8권4호
    • /
    • pp.595-604
    • /
    • 2013
  • 현재 수입차 차량의 등록대수가 해를 거듭할수록 증가하는 추세이다. 그에 맞춰 수입차와 같은 고급 차량을 정비하기 위한 차량 정비 업체의 환경 개선이 지속적으로 이루어지고 있다. 본 논문에서는 정비 차량의 고객 신뢰도를 제공하기 위한 스마트 차량 관리 시스템을 구현하기 위해 HSV 색상모델 기반의 키 프레임 추출 기법을 제안한다. 수리 차량의 입고 시 차량 번호판 인식 프로세스를 통해 차량의 번호판을 자동으로 인식 후, 이를 기준으로 차량의 수리 이력 확인 및 수리 요청을 처리한다. 차량 수리 동영상을 토대로 차량 수리 키 프레임을 추출하여 사용자의 스마트폰으로 제공하는 서비스를 구현한다. 아울러 제안하는 기법을 스마트 차량 관리 시스템에 적용함으로써 서비스의 우수성을 검증한다. 마지막으로 키 프레임 추출 기법의 성능을 향상시키기 위해 RGB 색상을 HSV 색상으로 변환하여 처리한다. 그 결과 제안된 방법의 키 프레임 추출을 위한 성능 평가에서 기존의 RGB 색상모델보다 HSV 색상모델이 재현율 측면에서 약 30% 더 우수함을 확인하였다.