• Title/Summary/Keyword: 집진시스템

Search Result 117, Processing Time 0.022 seconds

Nano Particle Precipitation and Residual Ozone Decomposition of a Hybrid Air Cleaning System Comprising Dielectric Barrier Discharge Plasma and MnO2 Catalyst or Activated Carbon (활성탄 또는 촉매가 장착된 배리어 유전체 방전 하이브리드. 공기청정 시스템의 나노입자 및 잔류 오존 제거 특성)

  • Byeon, Jeong-Hoon;Hwang, Jung-Ho;Ji, Jun-Ho;Kang, Suk-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.524-533
    • /
    • 2003
  • DBD(Dielectric Barrier Discharge) plasma in air is well established for the production of large quantities of ozone and is more recently being applied to aftertreatment processes for HAPs(Hazardous Air Pollutants). Aim of this work is to determine design and operating parameters of a hybrid air cleaning system. DBD and ESP(Electrostatic Precipitator) are used as nano particle charger and collector, respectively. Pelletized MnO$_2$ catalyst or activated carbon is used fer ozone decomposition or adsorption material. AC voltage of 7~10 KV(rms) and 60 Hz is used as DBD plasma source. DC - 8 KV is applied to the ESP for particle collection. The overall particle collection efficiency for the hybrid system is over 85 % under 0.64 m/s face velocity. Ozone decomposition efficiency with pelletized MnO$_2$ catalyst or activated carbon packed bed is over 90 % when the face velocity is under 0.4 m/s in dry air.

Collection characteristics of electro-static multi-staged impaction system for air pollutants removal of marine diesel engines (박용디젤기관의 대기오염 저감을 위한 전기 다단 임팩션 시스템의 집진특성)

  • YOA, Seok-Jun;KWON, Jun-Hyeong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.4
    • /
    • pp.545-552
    • /
    • 2015
  • The main object of this study is to investigate the collection characteristics of an electro-static multi-staged impaction system, experimentally. The experiment is carried out to analyze the characteristics of pressure drop and collection efficiency for the present system with the experimental parameters such as the inlet velocity, stage number, applied voltage and shape of discharge electrode, etc. In results, the pressure drop is shown below $148mmH_2O$ lower than that of the conventional bag filter at inlet velocity 3.46 m/s and 5 stage. For 5 stage, the collection efficiencies are to be 97.4, 99.0% with the applied voltage 0 kV at the inlet velocity 2.07, 3.46 m/s, while 98.4, 99.9% with 40 kV of a sharp edge discharge electrode. Additionally, the present system is to be considered as an effective compact system for a removal of particulate pollutants from marine diesel engines due to much higher collection efficiency and appropriate pressure drop.

A study on the photocatalyst filter design using UV-C (UV-C를 이용한 광촉매 필터 디자인에 관한 연구)

  • Han, Sang Yun;Kang, Seung Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.276-282
    • /
    • 2019
  • The purpose of this study was to analyze the structure of general filter using ultrafine filter (Profilter), dust collector filter, HEPA (HAPA-High Efficiency Particulate Air) filter, deodorized filters, etc. of air purifiers and to study new types of purified filters that can improve ultrafine dust, harmful gases, and sterilization cleanup performance. The study was also conducted by adding photocatalyst filters to the existing step-by-step filtration filter types, which were proposed in the design three coupling structure filters of the left and right UV-LED installation frames and the photocatalyst coating honeycomb frame. Future research is needed on the effect of photocatalyst filters. This study was to investigate the application and structure of photocatalyst filters to air purifiers.

A Study on the Measurement of Contact Force of Pantograph of Korean High Speed Train (한국형 고속전철 집전장치 접촉력 계측에 관한 연구)

  • Seo, Sung-Il;Cho, Yong-Hyun;Park, Choon-Soo;Mok, Jin-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1453-1457
    • /
    • 2003
  • The pantograph for Korean High Speed Train was developed by home-grown technology. In this study, a system to measure the contact force of pantograph is developed and installed on the prototype high speed train, Contact force prevents the pantograph from separating from the catenary. However, excessive contact force causes rapid erosion of catenary. The contact force can be divided into lift force and spring force. Contact force measurement is conducted while the train runs on the test track. The lift force is measured by the load cell on the roof separately and combined with the spring force of pan-head to form the contact force. Measured results show that the contact force of the pantograph of Korean High Speed Train is below the upper limit regulated by the high speed train standards. The contact force measuring system provides data to evaluate safety of the catenary system.

  • PDF

Collection Characteristics of Wet-type Multi-layered and Multi-staged Porous Plate System (습식 다층 다단 다공성 플레이트 시스템의 집진특성)

  • Yoa, Seok-Jun;Kim, Joo-Yeon
    • Journal of Power System Engineering
    • /
    • v.18 no.3
    • /
    • pp.42-50
    • /
    • 2014
  • The main object of this study is to investigate the collection characteristics of wet-type multi-layered and multi-staged porous plate system experimentally. The experiment is carried out to analyze the characteristics of pressure drop and collection efficiency for the present system with the experimental parameters such as water spray, inlet velocity, stage number and inlet particle concentration, etc. In results, for the present system of wet-type, the pressure drop represents 158 $mmH_2O$ higher 3% than that in dry-type at 5 stage and $v_{in}$=3.53 m/s. In case of 5 stage, $v_{in}$=3.53 m/s and water spray 250 ml/min, the collection efficiency of the present system becomes significantly higher as 99.7% comparing to that of the conventional wet-type scrubber. Additionally, for 5 stage and 250 ml/min, $SO_2$ removal efficiencies decrease with the increment of inlet velocity representing 75.0, 62.5, 50.0%, at $v_{in}$=2.12, 2.82, 3.53 m/s, respectively.

Flow visualization of PM preprocessing system using the small scale gascyclone precipitator (소형 가스사이클론 집진장치를 이용한 PM 전처리 시스템의 유동 가시화)

  • YANG, Yongsu;LEE, Kyounghoon;JO, Hyeonjeong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.52 no.3
    • /
    • pp.263-270
    • /
    • 2016
  • This study is aimed to design the mechanical gascyclone precipitator with an outstanding collection efficiency as one of ways to reduce exhaust gas of small-scale vessels. It estimated fine particles generated from diesel engines which has become one of the biggest environmental issues currently. Specifically, it quantitatively analyzed the flowing process from the cyclone gas exit; a duct via part to the collecting part of Cylindrical lower using DPIV (Digital Particle Image Velocimetry). Since the gas inlet height part became wider the previous theoretical dimensions, internal fluid characteristics of cyclone where the speed of internal swirl had been slow were investigated by temporary streamline of fine particles at $14-20{\mu}m$. The results showed that collecting efficiency was three times higher than the conical type utilized previously. In addition, this study supplemented imprecision problems from the previous theoretical equation and CFD interpretation with an experimental method. It also provided a basic data to design the cyclone precipitator by size of diesel engines for vessels.

Collection characteristics of wet-type rotating porous disk system for air pollutants removal of marine diesel engines (박용디젤기관의 대기오염 저감을 위한 습식 회전형 다공성 디스크 시스템의 집진특성)

  • Yoa, Seok-Jun;Jang, Chang-Ik
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.3
    • /
    • pp.318-325
    • /
    • 2014
  • The main object of this study is to investigate the collection characteristics of wet-type rotating porous disk system experimentally. The experiment is carried out to analyze the pressure drop and collection efficiency for the present system with the experimental parameters such as system inlet velocity, stage number, tube diameter, inlet concentration, etc. In results, for the present system, at 5 stage and ${\upsilon}_{in}=1.8m/s$, the pressure drop becomes significantly lower as $64mmH_2O$ in comparison with that of the conventional wet type scrubber (Venturi scrubber, over $250mmH_2O$). The collection efficiencies increase with higher inlet velocity showing 92, 95.7, 98.4%, while $SO_2$ removal efficiencies decrease with increment of inlet velocity as 80, 65, 50% at ${\upsilon}_{in}=1.08$, 1.44, 1.8 m/s and tube diameter $D_t=10mm$, respectively. The present system is to be considered as an effective compact system for a simultaneous removal of particle/gas phase pollutants from marine diesel engines.

Development of Air Cleaning Roll-Filter for Improving IAQ in Subway (도시철도 객실 공기질 개선을 위한 롤필터 개발연구)

  • Kwon, Soon-Bark;Park, Duck-Shin;Cho, Young-Min;Kim, Jong-Bum;NanGoong, Seok;Han, Tae-Woo;Cho, Kwan-Hyun;Kim, Tae-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.4
    • /
    • pp.313-319
    • /
    • 2011
  • In a modern society, various type of transportation modes are utilized, among them the subway system is the one of the main transportation mode which more than 7.21 million people ride a day in Seoul. Due to the increased interests on the indoor air quality (IAQ) of underground facilities, public concerns on IAQ of subway system are increasing also. Platform screen door (PSD) recently installed at the whole stations of Seoul subway and tunnel washing-out appeared to be effective in reducing particulate matters in the platform and tunnel. However there has not been any attempt to improve IAQ of subway cabin inside. Most technologies for removing airborne particulate matters are known to be difficult to adopt on the subway cabin due to the problem of maintenance cost. Therefore, the object of this study is a practical development of cabin air cleaning system which can reduce the concentration of airborne particles and harmful gases at the same time. In this paper, we focused on the development of particle removing system utilizing a roll-filter for increasing operating time of air filter. The prototype of system was designed and manufactured based on the numerical prediction results. For rollfilter device, 5 candidate filter materials were tested in point of particle collection efficiency and pressure drop. It was found that the electrically charged filter material showed the highest performance among them.

High Pressure Operation Characteristics of Pilot Scale Entrained-Bed Gasification System Using ABK Coal (ABK탄을 이용한 pilot급 분류층 석탄가스화기 시스템의 고압 운전특성)

  • Chung, Seokwoo;Yoo, Sangoh;Jung, Woohyun;Lee, Seungjong;Yun, Yongseung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.105.2-105.2
    • /
    • 2010
  • 석탄의 직접 연소 대신 고온/고압의 조건에서 불완전연소 및 가스화 반응을 통하여 일산화탄소(CO)와 수소($H_2$)가 주성분인 합성가스를 제조하여 이용하는 석탄 가스화 기술은 현실적인 에너지원의 확보를 위한 방법인 동시에 이산화탄소를 저감할 수 있는 기술이라 할 수 있다. 따라서, 본 연구에서는 non-slagging 방식의 pilot급 분류층 석탄가스화기를 대상으로 고압 미분탄공급장치, 합성가스 냉각장치, 고온 집진장치 등을 연계하여 상용급 석탄가스기와 유사한 $1,300^{\circ}C$, 20 kg/$cm^2$의 운전조건에서 미분탄의 안정적인 공급을 통한 양질의 합성가스 제조 및 제조된 합성가스의 분기 공급특성 시험을 진행하였다. 그리고, 고압 미분탄공급장치는 공급호퍼에 저장된 미분탄을 고온/고압 조건으로 운전되는 석탄가스화기에 공급하기 위한 설비로서, 이러한 고압 미분탄공급장치를 이용한 기류수송 방식의 미분탄 공급 기술은 가스화기 설계 및 운전제어 기술과 더불어 석탄가스화기 시스템의 안정적 연속운전을 위한 가장 핵심적인 기술 중 하나라고 할 수 있다. 따라서, 본 연구에서는 아역청탄인 인도네시아 ABK탄을 대상으로 향후 dense phase 고압 기류수송을 목적으로 하는 고압 미분탄공급장치의 성능특성을 시험을 진행하였는데, 시험 결과 73 kg/h 조건에서 20 kg/$cm^2$의 가스화기에 대한 안정적인 미분탄 공급특성을 확인할 수 있었으며, 이러한 미분탄 공급 조건에서 CO 40~45%, $H_2$ 16~20%, $CO_2$ 5~8% 조성의 양질의 합성가스를 평균적으로 $230{\sim}50Nm^3/h$ 안정적으로 제조할 수 있었다.

  • PDF

A Study on Numerical Calculations of Multi-stage Dedust System coupled with the Collection Principle of Cyclone, Inertial Impaction and Bag filter (II) : Venturi Installation (사이클론과 관성충돌 및 백필터의 제진원리를 일체화한 멀티 제진시스템의 수치 해석적 연구 (II) : 벤츄리 설치)

  • Hong, Sung-Gil;Jung, Yu-Jin;Jeong, Moon-Heon;Park, Ki-Woo;Lim, Ki-Hyuk;Suh, Hye-Min;Shon, Byung-Hyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05a
    • /
    • pp.371-374
    • /
    • 2012
  • 본 연구는 "사이클론과 관성충돌 및 백필터의 제진원리를 일체화한 고효율 멀티 제진시스템의 최적화 설계를 위한 수치 해석적 연구(I) : 집진기 입구 최적화 설계"에 이은 일련의 연구로서 앞선 연구에서 도출된 사이클론부 하단 벤츄리(Venturi)에서의 강한 하향 기류의 가속에 따른 분진 재비산 가능성에 대한 추가적 검토를 위한 연구이다. 사이클론부를 통과한 기류가 상향 흐름으로 방향을 전환할때 좀 더 가속시켜 빠르게 곡률반경을 형성하여 조대 입자의 분리를 극대화시키기 위한 목적으로 사이클론부 하단을 벤츄리 형상으로 설계하였으나, 유동장 분석 결과 벤츄리를 통과한 처리가스 흐름이 가속되면서 호퍼 하단까지 약 4~5 m/s의 강한 하향 흐름을 형성하고 호퍼 하부의 말단 부근에서 상향 흐름으로 방향 전환을 하고 있는 것으로 예측됨에 따라 설계 의도와는 달리 벤츄리 설치시 호퍼 하단에 포집된 분진의 재비산을 예방하는데는 크게 역할을 하지 못하는 것으로 나타났다.

  • PDF