• Title/Summary/Keyword: 집성목재

Search Result 76, Processing Time 0.026 seconds

Physical Properties of Fabric E-glass Fiber Reinforced Laminated Timber (I) - Mechanical Properties - (직물유리섬유 강화집성재의 물리적 특성(제1보) - 기계적 특성 -)

  • Jung, In-Suk;Lee, Weon-Hee;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.23-34
    • /
    • 2003
  • This study was carried out to investigate the mechanical properties of fabric E-glass fiber reinforced laminated timber. Specimens used to Korean red pine(Pinus densiflora) and Japanese larch(Larix kaemferi). Fabric E-glass fiber was inserted in the solid wood with aqueous polymer-isocyanate resin(MPU-500). The results were as follows: 1. Aqueous polymer-isocyanate resin(MPU-500) was good resin to manufacture laminated timber. specially, it was satisfied to property standard of construction laminated timber(KS F 3021) except for two ply glass fiber. 2. Bending and shear strengths of solid wood inserted with fabric glass fibers were not different from control solid wood. But, proportional limit bending stress was increased following the number of fabric glass fibers. Therefore, it was considered that to improve the bending and shear strength of fabric glass fiber reinforced laminated timber, the glass fiber thickness and its mesh should be modified to fitness following working conditions.

Lateral Load Performance Evaluation of Larch Glulam Portal Frames Using GFRP-Reinforced Laminated Plate and GFRP Rod (GFRP 보강적층판 및 GFRP rod를 이용한 낙엽송 집성재 문형라멘 구조의 수평가력 성능평가)

  • Jung, Hong-Ju;Song, Yo-Jin;Lee, In-Hwan;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.30-39
    • /
    • 2016
  • The evaluation of the lateral load performance for larch glulam portal frames was carried out using glass fiber reinforced plastic (GFRP) as connector in two different systems: the GFRP-reinforced laminated plates combined with veneer, and GFRP rod joints glued with epoxy resins to replace usual metal connectors for the structural glulam rahmen joints. As a result the yield strength, ultimate strength, initial stiffness of glulams of GFRP rod joints glued with epoxy resin decreased to 49%, 52% and 61% compared to those of the conventional metal connector. This connector will be a stress device where the bonding strength between the GFRP rod and glued laminated timber is important. Thus, there will be a high possibility that a problem may occur when it is applied to the field. On the other hand, the GFRP-reinforced laminated plates and wood (Eucalyptus marginata) pin were measured all within 3% for all measurements of the yield strength, ultimate strength, initial strength and ductility factor, regardless of high cross sectional loss on the glued laminated timber slit joint. In addition, the variation of stiffness on the cycle was 35%, which was the lowest, confirming that it was almost the same performance as the specimen prepared with the metal connector.

Visual Log Grading and Evaluation of Lamina Yield for Manufacturing Structural Glued Laminated Timber of Pitch Pine (리기다소나무 원목형질 조사 및 구조용집성재 제조 수율 평가)

  • Shim, Sangro;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.90-95
    • /
    • 2004
  • Pitch pine (Pinus rigida) has been planted in Korean forests for several decades, primarily for erosion control and use as a fuel supply. To enhance its value, and especially potential use as lamina for structural glued laminated timber (glulam), log quality and lumber yield of pitch pine were evaluated in this study. Trees from pure pitch pine stands with an average diameter at breast height of 32 cm were felled and bucked into 3.6m long 15 cm minimum butt-end diameter logs. Over 80% of the logs were classified to No.2 or No.3 visual grade group. Upon sawing total lumber yield was 55.2%, 39.9% for structural glulam lamina, 7.2% for louver, and 8.1% for miscellaneous use. The final lumber yield for manufacturing structural glulam, after cross-cutting to eliminate knots and finger jointing, was only 15.3%. To enhance this manufacturing yield requires that the rate of knot-included lumber used as lamina be raised. However arrangement of the knot-included lamina, whose mechanical properties need to be accurately evaluated, must be optimized to minimize any reduction to the structural glulam strength. The log quality and lumber yield of pitch pine evaluated in this study are expected to facilitate proper planning for wood product manufacture in the Korean lumbering and glulam industrial field, which has not previously dealt with this species.

Estimation of Radio Frequency Electric Field Strength for Dielectric Heating of Phenol-Resorcinol-Formaldehyde Resin Used for Manufacturing Glulam (구조용 집성재 제조용 접착제(Phenol-Resorcinol-Formaldehyde Resin) 유전 가열을 위한 고주파 전기장 세기 추산)

  • Yang, Sang-Yun;Han, Yeonjung;Park, Yonggun;Eom, Chang-Deuk;Kim, Se-Jong;Kim, Kwang-Mo;Park, Moon-Jae;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.339-345
    • /
    • 2014
  • For enhancing productivity of glulam, high frequency (HF) curing technique was researched in this study. Heat energy is generated by electromagnetic energy dissipation when HF wave is applied to a dielectric material. Because both lamina and adhesives have dielectric property, internal heat generation would be occurred when HF wave is applied to glulam. Most room temperature setting adhesives such as phenol-resorcinol-formaldehyde (PRF) resin, which is popularly used for manufacturing glulam, can be cured more quickly as temperature of adhesives increases. In this study, dielectric properties of larch wood and PRF adhesives were experimentally evaluated, and the mechanism of HF heating, which induced the fast curing of glue layer in glulam, was theoretically analyzed. Result of our experiments showed relative loss factor of PRF resin, which leads temperature increase, was higher than that of larch wood. Also, it showed density and specific heat of PRF, which are resistance factors of temperature increase, were higher than those of wood. It was expected that the heat generation in PRF resin by HF heating would occur greater than in larch wood, because the ratio of relative loss factor to density and specific heat of PRF resin was greater than that of larch wood. Through theoretical approach with the experimental results, the relative strengths of ISM band HF electric fields to achieve a target heating rate were estimated.

Life Cycle Assessment of Timber Arch-Truss Bridge by Using Domestic Pinus rigida Glued-Laminated Timber (리기다소나무 구조용 집성재를 활용한 아치 트러스 목조교량의 전과정평가)

  • Son, Whi-Lim;Park, Joo-Saeng;Kim, Kwang-Mo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.1
    • /
    • pp.1-12
    • /
    • 2014
  • This study carried out life cycle assessment for evaluating environmental impacts of timber Arch-Truss bridge by using domestic Pinus rigida Miller glued-laminated timber throughout life cycle such as extraction, manufacturing, transportation, construction, use, dismantlement, transportation of waste, disposal and recycling. The life cycle GHG (GreenHouse Gas) emissions of the target bridge are 192.56 ton $CO_2$ eq. in 50 years. Especially, the life cycle GHG emissions of concrete used in the target bridge are 82.84 ton $CO_2$ eq. which accounts for 53.02% of the GWP (Global Warming Potential) in extraction and manufacturing stages. The target bridge is constructed of $116.57m^3$ of domestic Pinus rigida Miller glued-laminated timber and used timber has stored 104.72 ton $CO_2$. If an effect of carbon storage in timber is applied to the total GHG emissions of the target bridge, the GHG emissions can be reduced by 54.38%. In the case of substitution effect, if domestic Pinus rigida Miller glued-laminated timber replaces steel manufactures used in other bridge which has the same structure and life span as the target bridge, the GHG emissions in extraction and manufacturing stages can be reduced by 10.26% to 23.91%.

The Practice of Bending Deflection using Non-destructive MOE of Glulam (비파괴 탄성계수를 이용한 집성재의 휨변형 예측)

  • Park, Jun-Chul;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.48-55
    • /
    • 2009
  • In the glulam beam deflection it is necessary to check the reliability of theory formula, because of wood anisotropy and wood qualities (knot, slop of grain). In this experiment, when bending stress occurred on glulam, practice deflection of glulam measuring with AICON DPA-Pro 3D system were compared with prediction deflection calculated as substituting MOE through non-destructive testing and static MOE through bending test in differential equation of deflection curve. MOE using ultrasonic wave tester of laminae, MOE using natural frequencies of longitudinal vibrations ($E_{cu}$, $E_{cf}$), MOE using ultrasonic wave tester of glulam ($E_{gu}$) and MOE using natural frequencies of longitudinal vibrations ($E_{gf}$) were substituted in this experiment. When practice deflection measured by 3D system was compared with prediction deflection calculated with differential equation of deflection curve, within proportional limit the ratio of practice deflection and prediction deflection was similar as 1.12 and 1.14, respectively. Deflection using ultrasonic wave tester was 0.89 and 0.95, Deflection using natural frequencies of longitudinal vibrations was 1.07 and 1.10. The results showed that prediction deflection calculated by substituting using non-destructive MOE of glulam having anisotropy in differential equation of deflection curve was agreed well with practice deflection.

Comparative Analysis of Fire Resistance in Glued Laminated Timber: The Impact of Adhesives and Surface Direction (구조용 집성재의 접착제 종류 및 접착면 방향성에 따른 내화성능 비교 분석)

  • Choi, Yun-Jeong;An, Jae-Hong;Baik, Kwon-hyuk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.6
    • /
    • pp.761-772
    • /
    • 2023
  • The fire resistance design of timber structures involves calculating the residual section based on charring depth, which is then utilized in structural design. Charring depth is determined from fire-resistance test results in Korea, which currently do not account for the charring properties of the adhesive used in Glued Laminated Timber(GLT) production. This study fabricated GLT using various adhesives employed in domestic GLT production, comparing the charring properties by adhesive type and the fire resistance performance relative to the directionality of the laminated surface. Melamine demonstrated the most advantageous fire resistance performance, followed by resorcinol and polyurethane. Furthermore, it was established that the laminated section exhibited a higher charring rate, influenced by the adhesive, compared to the laminated surface, which significantly impacts the fire resistance performance.

Shear Strength of Reinforced Glulam-bolt Connection by Glass Fiber Combination (유리섬유 조합에 따른 보강 집성재 볼트접합부의 전단강도 특성)

  • Kim, Keon-Ho;Song, Yo-Jin;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.51-57
    • /
    • 2013
  • In order to know the shear performances of a bolted connection in reinforced glulam depending upon the combination of textile glass fiber, a tensile-type shear test was conducted. Textile glass fiber was used as a reinforcement, whose glass fiber arrangement was a plain weaving type or a diagonal cloth type. Reinforced glulam was made up of 5 plies and it was produced by inserting and laminating the plies between laminas depending upon a changed insert position and combination form of textile glass fiber. Tensile-type shear test specimens were a steel plate insert-type and joined at end-distance 7D with bolts whose diameter 12 or 16 mm. In textile glass fiber reinforced glulam, whose volume ratio was 1%, the yield shear strength of a 12 mm bolted connection increased by 10% when a test specimen had reinforced internal layers than when external layers were reinforced. As for textile glass fiber reinforced glulam, whose volume ratio was 2%, the yield shear strength of a 12 mm bolted connection increased significantly by about 22% compared to the bolted connection of non-reinforced glulam, and the yield shear strength of a 16 mm bolted connection was improved by about 20% compared to the bolted connection of non-reinforced glulam.

Strength Properties of GFRP Reinforced Glulam Beams Bonded with Polyvinyl Acetate-Based Emulsion Adhesive (초산비닐수지계 접착제를 사용한 유리섬유강화플라스틱 복합집성재의 강도 성능 평가)

  • Park, Jun-Chul;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.19-25
    • /
    • 2008
  • This study was carried out to investigate the bending strength properties of the unreinforced glulam beams and the GFRP laminated glulam beams according to the volume ratio of GFRP. The 7-layer glulam beams ($10cm(b){\times}14cm(h){\times}180cm(l)$) were manufactured, using Larch (Larix kaempferi Carr.) laminae ($2cm(h){\times}10cm(b){\times}360cm(l)$), which were dried to the moisture content of 8% and specific gravity of 0.54. GPRP of 0.1 and 0.3 cm was reinforced between the outmost layer of bottom and next layer. When the glulam beams were reinforced with GFRP at the volume ratio of 0.7% and 2.1%, respectively, the bending strength was increased by 12% and 28%, respectively, in the reinforced beams than in control glulam beams. Also, the GFRP reinforced layer of the glulam beams with GFRP laminations blocked the progression of rupture, and the unbroken part held about 90% of the bending strength. In the results of glue joints test, the block shear strength is higher than $7.1N/mm^2$, the standard of KS F3021, and in the result of delamination, the adhesive strength is good as the water soaking and boiling delamination was less than 5%.

A Study on the Fabrication of the Laminated Wood Composed of Poplar and Larch (포푸라와 일본잎갈나무의 집성재 제조에 관한 연구)

  • Jo, Jae-Myeong;Kang, Sun-Goo;Kim, Ki-Hyeon;Chung, Byeong-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.25-31
    • /
    • 1974
  • 1. Various gluing qualities applying Resorcinol Plyophen #6000 were studied on aiming the strength relationships of laminated woods resulted by single species [poplar (Populus deltoides), larch(Larix leptolepis)], mixed species of (poplar and larch), preservatives, treated poplar the scarf joint with mixed species of poplar and larch and the scarf joint treated with preservatives. 1. 1 On the block shear and on the DVL tension test, the mean wood failure ratio showed an excellent value i.e., above 65% and the tangential strength for larch was higher than that of radial, but it was reversed for poplar as shown in Tables 1 and 2. 1. 2 The lamina treated with Na-PCP reduced slightly the strength but the limited strength allowed for manufacturing laminated wood was not influenced by treating Na-PCP as shown in Tables 3 and 4. 1. 3 The safe scarf ratio in the plane scarf joint was above 1/12 for larch and 1/6 for poplar regard less of the chemical treatment or untreatment as shown in Tables. 5, 6, 7 and 8. 2. In the normal and boiled state, the gluing quality of the laminated wood composed of single[poplar (Populus deltoides), larch (Larix leptolepis)] and double species (poplar and larch) glued with Resorcinol Plyophen #6000 were measured as follow, and also represented the delamination of the same laminated wood. 2.1 The normal block shear strength of the straight and curved laminated wood (in life size) were more than three times of the standards adhesion strength. And, the value of the boiled stock was decreased to one half of the standard shear adhesion strength, but it was more than twice the standard strength for the boiled stock. Thus, it was recognized that the water resistance of the Resorcinol Plyophen #6000 was very high as shown in Tables 9 and 10. 2. 2 The delamination ratio of the straight and curved laminated woods in respect of their composition were decraesed, in turn, in the following order i. e., larch, mixed stock (larch+poplar) and poplar. The maximum value represented by the larch was 3.5% but it was below the limited value as shown in Table 11. 3. The various strengthes i.e., compressive, bending and adhesion obtainted by the straight laminaced wood which were constructed by five plies of single and double species of lamina i. e., larch (Larix leptolepis) and poplar (Populus euramericana), glued with urea resin were shown as follows: 3. 1 If desired a higher strength of architectural laminated wood composed of poplar (P) and larch (L), the combination of the laminas should be arranged as follows, L+P+L+P+L as shown in Table 12. 3.2 The strength of laminated wood composed of laminas which included pith and knots was conside rably decreased than that of clear lamina as shown Table 13. 3.3 The shear strength of the FPL block of the straight laminated wood constructed by the same species which were glued with urea adhesives was more than twice the limited adhesion strength, thus it makes possible to use it for interior constructional stock.

  • PDF