• Title/Summary/Keyword: 짐벌

Search Result 43, Processing Time 0.038 seconds

Stable Control Device Design of Strong Gimbal Against Disturbance (외란에 강인한 짐벌에 안정적인 제어장치 설계)

  • LEE, Gil-Ho;angani, Amarnath;Kim, Byeong-Jun;Jeong, Hui-Tae;Shin, Kyoo-Jae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.356-359
    • /
    • 2018
  • 최근 드론의 사진영상촬영은 지형 감시를 위한 항공사진용으로 많이 쓰이고 있다 이것을 드론의 짐벌제어를 통해 아주 정교하고 정확하고 신속하게 영상촬영을 이끌어 낼 수 있으며, 본 논문에서는 짐벌과 센서간의 자동 조종 장치와 함께 제안되었다. 짐벌의 제어기능은 센서를 통해 자동 조종 비행 제어 시스템으로 구현되어 할당된 고정 소수점 대상. 공중 짐벌 프레임에서 지구 프레임으로의 좌표 변환 짐벌 본체 프레임 좌표가 대상에 올바르게 정렬되어야하고 짐벌 잠금 문제를 피하고, 짐벌의 제어를 안정적인 마이크로 컨트롤러로 구현이 가능토록 하여 기존 짐벌 제어 보다 흔들림이 없고 정교한 영상촬영 실현 할 것 입니다.

로켓 엔진용 짐벌 마운트 개념 설계

  • Kim, Ok-Gu;Jeong, Yong-Hyeon;Park, Jong-Yeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.150.2-150.2
    • /
    • 2012
  • 로켓 엔진용 짐벌 마운트는 발사체 발사 후 자세 제어를 위해 발사체와 엔진사이에 장착된 TVC(Thrust Vector Control) 구동기의 작동으로 짐벌 운동을 수행하며 기구학적으로 자세 제어를 하는데 있어 매우 중요한 역할을 하는 요소이다. 이러한 짐벌 마운트는 엔진 추력을 발사체에 전달하는 기능 이외에 지정된 위치에 엔진을 고정시키는 역할과 위치 고정 후 발사체 단과 엔진의 정확한 추력 전달을 위한 기계적 불일치 보정 기능, 짐벌 구동에 대한 피봇 기능을 동시에 수행하여야 하는 복합적인 기능을 가지고 있다. 특히, 이중에서도 물리적으로 고 추력의 하중을 전달하는 요소로서 충분한 강도와 강성을 지녀야 하므로 본 연구에서는 이와 관련된 초기 설계 요구도 분석을 바탕으로 설계 규격에 부합하는 짐벌 마운트의 구조적 검토를 통해 로켓 엔진용 짐벌 마운트 설계 형상을 개념적으로 제시하였다.

  • PDF

A Study of the gimbal system control unsing the Intelligent PID (지적 PID를 이용한 짐벌시스템 제어 연구)

  • Kim, Min;Byun, Gi-Sig;Kim, Gwan-Hyung;Choi, Myoung-Hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.99-100
    • /
    • 2016
  • 드론이나 이동형 촬영장비에 장착된 카메라로부터 깨끗하고 안정된 영상을 획득하기 위해서는 짐벌시스템의 안정화기 설계가 필요하다. 짐벌시스템은 카메라 모듈을 지지하는 구조와 외부로 부터의 진동을 차단하면서 정확한 각도를 추종하는 안정화기로 구성된다. 이동형 촬영장비나, 비행중인 드론에는 매우 다양한 주파수 성분의 진동이 발생되는데, 이러한 진동을 제어하기 위하여 6자유도 운동방정식을 유도하고, 이 중에서 본 논문에서는 일반적으로 rolling, pitching, yawing 운동에 대해서는 PID 제어기를 사용하여 안정화를 제어하기만, 카메라종류나 짐벌시스템 구조가 바뀔 때 마다 PID 파라미터를 변경해야 되는 경우가 빈번하다. 본 논문에서는 이런 문제점을 개선하기 새로이 제기된 제어 기법인 지적 PID(intelligent PID) 제어를 통하여 진동제어를 수행하여 짐벌시스템의 안정화를 위한 제어기법을 제안하고자 한다.

  • PDF

신호 압축법을 이용한 짐벌 시스템의 동특성 규명

  • 김문식;윤정주;유기성;이민철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.190-190
    • /
    • 2004
  • 목표물이 시선의 중심에서 벗어났을 때 모터를 구동시켜 목표물을 시선의 중심에 고정시킴과 동시에 외란으로 인한 카메라의 시선이 흔들리는 것을 막아주는 것을 시선 안정화 시스템이라 한다. 이러한 시스템은 능동 서스펜션 역할출 하는 서보제어기 설계기술이 요구된다. 이론 위하여 본 연구에서는 3축의 회전운동이 가능하고 회전운동에 따른 카메라의 시선의 회전축이 일체화가 되도록 하는 짐벌(gimbals) 구조를 설계한다.(중략)

  • PDF

A Study on the Development of Camera Gimbal System for Unmanned Flight Vehicle with VR 360 Degree Omnidirectional Photographing (360도 VR 촬영을 위한 무인 비행체용 카메라 짐벌 시스템 개발에 관한 연구)

  • Jung, Nyum;Kim, Sang-Hoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.8
    • /
    • pp.767-772
    • /
    • 2016
  • The purpose of this paper is to develop a gimbal system installed in the UFV(unmanned flight vehicles) for 360 degree VR video. In particular, even if the UFV rotated any direction the camera position is fiexd to minimize the shaking using the gyro sensor and the camera system is stable for taking $360^{\circ}$ panorama VR images.

Gimbal System Control for Drone for 3D Image (입체영상 촬영을 위한 드론용 짐벌시스템 제어)

  • Kim, Min;Byun, Gi-Sig;Kim, Gwan-Hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.11
    • /
    • pp.2107-2112
    • /
    • 2016
  • This paper is designed to develop a Gimbal control stabilizer for drones Gimbal system control for drone for 3D image to make sure clean image in the shaking and wavering environments of drone system. The stabilizer is made of tools which support camera modules and IMU(Inertial Measurement Unit) sensor modules follow exact angles, which can brock vibrations outside of the camera modules. It is difficult for the camera modules to get clean image, because of irregular movements and various vibrations produced by flying drones. Moreover, a general PID controller used for the movements of rolling, pitching and yawing in order to control the various vibrations of various frequencies needs often to readjust PID control parameters. Therefore, this paper aims to conduct the Intelligent-PID controller as well as design the Gimbal control stabilizer to get clean images and to improve irregular movements and various vibrations problems referenced above.

Smart Glove Gimbal Control that Improves the Convenience of Drone Control (드론 제어의 편의성을 향상한 스마트 글러브 짐벌 제어)

  • Lee, Seung Ho;Shin, Soo Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.6
    • /
    • pp.890-896
    • /
    • 2022
  • In this paper, gimbal camera control through smart gloves was implemented to increase convenience and accessibility to the control of drones used in various fields. Smart gloves identify human gestures and transmit signals through Bluetooth. The received signal is converted into a signal suitable for the drone through a GCS (Gound Control Station). Signals from smart gloves are expressed in a quaternion method to prevent gimbal locks, but for gimbal cameras, conversion is required to use Roll, Pitch, and Yaw methods. The data conversion mission is performed in the GCS. The GCS transmits an input signal to the control board of the drone through Wi-Fi. The control board generates and outputs the transmitted signal in a PWM manner. The output signal is input to the gimbal camera through the SBUS method and controlled. The input signal of the smart glove averaged 0.093 s and up to 0.099 s to output to the gimbal camera, showing that there was no problem in real-time use.

Auto-Tracking Camera Gimbal for Power Line Inspection Drone and its Field Tests on 154 kV Transmission Lines (송전선로 자동추적 카메라 짐벌 및 154 kV 송전선로 현장시험)

  • Kim, Seok-Tae;Park, Joon-Young;Lee, Jae-Kyung;Ham, Ji-Wan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.149-156
    • /
    • 2019
  • In the field of maintenance of power transmission lines, drones have been used for their patrol and inspection by KEPCO since 2017. This drone technology was originally developed by KEPCO Research Institute, and now workers from four regional offices of KEPCO have directly applied this technology to the drone patrol and inspection tasks. In the drone inspection system, a drone with an optical zooming camera and a thermal camera can fly automatically along the transmission lines by the ground control system developed by KEPCO Research Institute, but its camera gimbal has been remotely controlled by a field worker. Especially the drone patrol and inspection has been mainly applied for the transmission lines in the inaccessible areas such as regions with river-crossings, sea-crossings and mountains. There are often communication disruptions between the drone and its remote controller in such extreme fields of mountain areas with many barriers. This problem may cause the camera gimbal be out of control, even though the inspection drone flies along the flight path well. In addition, interference with the reception of real-time transmitted videos makes the field worker unable to operate it. To solve these problems, we have developed the auto-tracking camera gimbal system with deep learning method. The camera gimbal can track the transmission line automatically, even when the transmitted video on a remote controller is intermittently unavailable. To show the effectiveness of our camera gimbal system, its field test results will be presented in this paper.

The Control for the 2-Axis Stabilized Gimbal using the PI-LEAD Algorithm (PI-LEAD 알고리즘을 이용한 2축 안정화 짐벌 시스템 제어)

  • Lee, Jin-Bok;Choi, Han-Go
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.2
    • /
    • pp.117-123
    • /
    • 2013
  • Since the nonlinear factors such as friction in a mechanical servo system can't be easily measured nor estimated accurately. Therefore, it is difficult to compensate friction correctly. Friction makes a significant error in a 2-axis stabilized gimbal system and finally fails to reach the ultimate control performance goals. To solve these problems, lots of studies on the control methods applying observer have been performed. However, these methods can be used in specific conditions and are limited to apply them to the accurate 2-axis stabilized gimbal system in military sector. This paper deals with the PI-LEAD algorithm which is modified with a general and robust PID algorithm, proves the effect of the algorithm through modeling and simulation, and verifies the performance by applying the algorithm to the real 2-axis stabilized system. It is verified through the performance test that the PI-LEAD algorithm minimizes the error caused by friction and meets requirements of the accurate servo system.

Design of Control Logic, and Experiment for Large Torque CMG (대형 토크 제어모멘트자이로의 제어로직 설계 및 실험)

  • Lee, Jong-Kuk;Song, Tae-Seong;Kang, Jeong-Min;Song, Deok-Ki;Kwon, Jun-Beom;Seo, Joong-Bo;Oh, Hwa-Suk;Cheon, Dong-Ik;Park, Sang-Sup;Lee, Jun-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.4
    • /
    • pp.291-299
    • /
    • 2021
  • This paper presents the control logic for the momentum wheel and gimbals in the CMG system. First, the design of the control logic for the momentum wheel is described in consideration of the power consumption and stability. Second, the design of the control logic for the gimbals considering the resonance of the vibration absorber and stability is explained. Third, the measurement configuration for the force and torque generated by the CMG is described. Fourth, the results of the frequency and time response test of the momentum wheel and gimbals are shown. Last, the measurements of the force and the torque generated through the CMG are explained.