Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2007.06a
/
pp.336-339
/
2007
A new query model is required to match requirements of stream-based applications such as patient monitoring system, since traditional DBMSs are not designed to provide continuous queries over stream data. In the patient monitoring system, there are many types of biomedical signals such as blood pressure and temperature, and these signals gathered by biomedical sensors should be treated as a stream, that is an ordered set of signals. In this paper, we categorized all possible queries to be used in patient monitoring system by four types of queries. Then, we have proposed a new sliding window query model which is capable of expressing these four types of queries.
Annual Conference on Human and Language Technology
/
2003.10d
/
pp.163-169
/
2003
현재의 질의응답 시스템은 TREC(Text Retrieval Conference) 질의집합에 대해 최대 80% 정도의 응답 성공률을 보이고 있다. 하지만 질의 유형에 다라 성능의 많은 차이가 있으며, 인과관계에 대한 질의에 대해서는 매우 낮은 응답 성공률을 보이고 있다. 본 연구는 인접한 두 문장 혹은 두 문장 혹은 두 명사구 사이에 존재하는 인과관계를 추출하고자 한다. 기존의 명사구 간 인과관계 추출 연구에서는 인과관계 단서구문과 두 명사구의 의미를 주요한 정보로 사용하였으나, 사전 미등록어가 사용되었을 때 올바른 선택을 하기 어려웠다. 또한, 학습 코퍼스에 대한 인과관계 부착과정이 선행되어야 하며, 다량의 학습자료를 사용하기가 어려웠다. 본 연구에서는 인과관계 명사구 쌍에서 추출된 어휘 쌍을 기존의 단서구문과 같이 사용하는 방법을 제안한다. 인과관계 분류를 위해 나이브 베이즈 분류기를 사용하였으며, 비지도식 학습과정을 사용하였다. 제안된 분류 모델은 기존의 분류 모델과 달리 사전 미등록어에 의한 성능 저하가 없으며, 학습 코퍼스의 인과관계 분류 작업이 선행될 필요 없다. 문장 내 명사구간의 인과관계 추출 실험 결과 79.07%의 정확도를 얻었다. 이러한 결과는 단서구문과 명사구 의미를 이용한 방법에 비해 6.32% 향상된 결과이며, 지도식 학습방식을 통해 얻은 방법과 유사한 결과이다. 또한 제안된 학습 및 분류 모델은 문장간의 인과관계 추출에도 적용가능하며, 한국어에서 인접한 두 문장간의 인과관계 추출 실험에서 74.68%의 정확도를 보였다.
Annual Conference on Human and Language Technology
/
2003.10d
/
pp.214-218
/
2003
질의응답 시스템은 인터넷과 같은 실용적 환경에서 사용될 경우, 실제 사용자의 질의는 다양한 유형으로 나타나게 된다. 따라서 실용적인 시스템에서 사용되는 질의는 문장의 형태나 단어의 쓰임에 관계없이 같은 의도를 가진 질의를 같은 유형으로 분류할 수 있는 의문형 문장패턴을 태깅하여 다양한 형태의 자연어로 기술된 문서에서 원하는 응답으로 처리할 수 있는 질의 응답 시스템은 정보 검색 시스템으로서의 가능성을 보여준다.
Annual Conference on Human and Language Technology
/
2006.10e
/
pp.228-232
/
2006
본 논문에서는 기네스 기록정보, 즉 기록적 가치가 있는 기록정보에 대한 질의를 처리하는 시스템에 대하여 기술한다. 기록정보 질의의 경우 일반적으로 정형화된 형태로 나타나며 이 형태를 규칙으로 사용하여 질의에 해당되는 정답을 추출하게 된다. 기록적 가치가 있는 문장에서 해당 문장이 기록 문장임을 나타내어 주는 부사를 기록부사로 정의하고, 예로 가장 제일, 최고의, 최대의, 최소의, 최초의, 최초로 등을 들 수 있다. 기록정보 질의의 경우 용언의 포함여부에 따라 기록부사는 두 가지 유형으로 분류된다. 기록부사는 질의문 내의 지역정보 및 정답유형과 함께 정답 추출의 중요한 요소로 사용되고, 용언정보는 기록 부사의 유형, 질의문 내의 용언 포함 여부에 따라 정답 추출의 요소로 결정되어진다. 제안한 시스템은 질의분석을 통하여 정답 추출을 위한 단서를 찾고 이를 이용하여 후보 문서와 후보 문장을 검색한 후 정답 추출 규칙을 이용하여 정답을 추출하게 된다.
Proceedings of the Korean Information Science Society Conference
/
2000.10a
/
pp.6-8
/
2000
XML 문서의 폭발적인 확산에 따라 Web상의 각 사이트는 XML 문서를 분산 저장하여 관리하고 있다. 그리고 XML 문서들 간에는 다양한 링크를 통해 관련된 정보를 참조할 수 있다. 그러나 현재까지 XML과 관련하여, 링크를 지원하는 질의어 개발이나 링크를 활용한 XML 검색 시스템 개발에 대한 연구는 미비하다. 본 논문에서는, 실제 Web상에 분산되어 저장된 전자 문서들 중 하이퍼링크로 연결된 XML 문서들을 대상으로, 링크를 지원하기 위해 기존 XML 질의어를 확장에 대해 연구하였다. 이를 위해 XML 링크를 지원하는 질의의 유형을 분류하고, 링크를 지원하기 위한 XML 질의어의 확장에 대해 기술한다. 그리고 링크를 활용한 XML 질의 처리 방안에 대해 기술한다.
Annual Conference on Human and Language Technology
/
2012.10a
/
pp.201-205
/
2012
지식검색은 방대한 지식정보 데이터를 바탕으로 사용자의 질문에 대한 답변을 검색하는 시스템이다. 이러한 사용자 참여로 구축된 지식정보는 잘못된 답변으로 인한 신뢰성 부족과 중복 답변 등의 문제점이 있어, 원하는 답변을 찾기 위해서는 지식검색에서 다수의 답변을 읽고 그 답변의 진위여부를 판단해야만 한다. 만일 정답에 포함되는 단어나 어구가 답변들에서 나타내는 통계적 특성을 활용하여 사용자가 원하는 답변을 제시할 수 있다면, 지식검색의 효용성과 신뢰성이 크게 향상될 수 있다. 본 논문에서는 지식정보 데이터 분석을 통해 사용자의 질문의 유형을 단어, 목록, 도표, 글의 4가지 유형으로 분류하고, 각 분류에 대한 사용자 질의어의 답변을 요약하는 방식을 제안한다. 단어, 목록, 글 유형은 TF와 IDF, 어휘 간의 거리 정보를 통해서 중요 단어를 추출하여 각 유형에 적합한 형식의 답변을 사용자에게 제시한다. 도표형은 답변들에서 사용자의 의견 정보를 추출하여 의견 통계를 도표로서 제시한다.
Journal of the Korean Institute of Intelligent Systems
/
v.21
no.4
/
pp.414-422
/
2011
IR (Information Retrieval) systems have the methods that compare relationships between query and index to identify document that may be fit to the user's query keyword. However, the methods usually ignore the importance of relations that are not expressed in the query. Therefore, in this study, we describe how to refine the queries' relation from keyword and to reveal the hidden intent. A useful relationship between query and keyword in IR wth studied and we classified the tion fromrelation. Firstfromall, we did researchmrelated on semantic relationship and ontolhiical researchmin foreign and domestic research, and also analyzed semantic network practices, information retrieval technolhiy, extracted and classified the tion fromrelationships s' relasite's real-world datamin whichminformation retrieval technolhiin fare applied. Next, we souiht to solve the problems occurred frequently i' relasituation that searchers tioically face. I' relacurrent search technolhiy, the mesh searchmresult fare poured by simply comparn ina query with index terms. Therefore, the need for an intelligent search fittn inusers' intent is required. The relationships between two queries to re hiddee and identify relasearcher's intent have to be revealed. By analyzn inthe practical cthes s' queries and classifyn inthem into nine kind fromrelationship tion, we proposed the method to design relation revealn inand role namn i, and we have also illustrated limitations of that methods.
This study was to investigate the types of middle school students’ conceptual change on electrolyte and ion. Data were collected by pre- and post- exams of 9th grade students’ conceptions of electrolyte and ion, and by semi-structured interviews with nine students served as case representatives who participated in the study. All interviews were transcribed, analyzed and classified by conceptual change according to the responses of the students. The results are as follows: First, students’ ion conceptual change was classified into four types; simple conception to sophisticated conception, incomplete conception to scientific conception, misconception to confused conception, and misconception to misconception. Most students had difficulty in understanding of the concepts of ion in pre- and post-class, and they failed to distinguish between atom and subatomic particles precisely. Second, students’ conceptual change of electrolyte was also classified into the following four types; partially scientific conception to sophisticated conception, misconception to partial misconception, incomplete conception to incomplete conception and misconception to misconception. The study found that students had difficulty distinguishing the difference between electrolytes and nonelectrolytes. Third, students also had difficulty understanding the concepts on particles because they learned the ‘electrolyte and ion’ unit so quickly in the second semester of 9th grade in order to fill in the academic reports for applying high schools. Furthermore, some suggestions were made based on the results for understanding scientific concepts on particles.
The purpose of this study was to confirm the mental health and quality of life by type-D personality of the patients with coronary artery disease (CAD). The participants in the study were 111 hospitalized patients with CAD at a hospital in Gyeonggi-do. The type-D personality was assessed by the Type-D Personality Scale (DS14). The mental health was measured with Symptom Checklist-90-Revision (SCL-90R) while quality of life was assessed with World Health Quality of Life Assessment Instrument (WHOQOL-BREF). The data analysis revealed that 36.1% of CAD patients were identified as having type-D personality traits. Non type-D personality patients have shown better mental health state than type-D personality patients (p<.001) have. The level of quality of life in the type D personality patients were significantly lower than that of non type-D counterparts (p<.001). It is necessary for type-D personality to be considered, when the nursing intervention programs for improving the mental health and quality of life of the patients with CAD are developed.
Community-based Question Answering system is a system which provides answers for each question from the documents uploaded on web communities. In order to enhance the capacity of question analysis, former methods have developed specific rules suitable for a target region or have applied machine learning to partial processes. However, these methods incur an excessive cost for expanding fields or lead to cases in which system is overfitted for a specific field. This paper proposes a multiple machine learning method which automates the overall process by adapting appropriate machine learning in each procedure for efficient processing of community-based Question Answering system. This system can be divided into question analysis part and answer selection part. The question analysis part consists of the question focus extractor, which analyzes the focused phrases in questions and uses conditional random fields, and the question type classifier, which classifies topics of questions and uses support vector machine. In the answer selection part, the we trains weights that are used by the similarity estimation models through an artificial neural network. Also these are a number of cases in which the results of morphological analysis are not reliable for the data uploaded on web communities. Therefore, we suggest a method that minimizes the impact of morphological analysis by using character features in the stage of question analysis. The proposed system outperforms the former system by showing a Mean Average Precision criteria of 0.765 and R-Precision criteria of 0.872.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.