• Title/Summary/Keyword: 질소 동위 원소

Search Result 111, Processing Time 0.024 seconds

Yield, Nitrogen Use Efficiency and N Uptake Response of Paddy Rice Under Elevated CO2 & Temperature (CO2 및 온도 상승 시 벼의 수량, 질소 이용 효율 및 질소 흡수 반응)

  • Hyeonsoo Jang;Wan-Gyu Sang;Youn-Ho Lee;Pyeong Shin;Jin-hee Ryu;Hee-woo Lee;Dae-wook Kim;Jong-tag Youn;Ji-Won Han
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.346-358
    • /
    • 2023
  • Due to the acceleration of climate change or global warming, it is important to predict rice productivity in the future and investigate physiological changes in rice plants. The research aimed to explore how rice adapts to climate change by examining the response of nitrogen absorption and nitrogen use efficiency in rice under elevated levels of carbon dioxide and temperature, utilizing the SPAR system for analysis. The temperature increased by +4.7 ℃ in comparison to the period from 2001 to 2010, while the carbon dioxide concentration was held steady at 800 ppm, aligning with South Korea's late 21st-century RCP8.5 scenario. Nitrogen was applied as fertilizer at rates of 0, 9, and 18 kg 10a-1, respectively. Under conditions of climate change, there was an 81% increase in the number of panicles compared to the present situation. However, grain weight decreased by 38% as a result of reduction in the grain filling rate. BNUE, indicative of the nitrogen use efficiency in plant biomass, exhibited a high value under climate change conditions. However, both NUEg and ANUE, associated with grain production, experienced a notable and significant decrease. In comparison to the current conditions, nitrogen uptake in leaves and stems increased by 100% and 151%, respectively. However, there was a 25% decrease in nitrogen uptake in the panicle. Likewise, the nitrogen content and NDFF (Nitrogen Derived from Fertilizer) in the sink organs, namely leaves and roots, were elevated in comparison to current levels. Therefore, it is imperative to ensure resources by mitigating the decrease in ripening rates under climate change conditions. Moreover, there seems to be a requirement for follow-up research to enhance the flow of photosynthetic products under climate change conditions.

Concentrations and Natural 15N Abundances of NO3-N in Groundwater and Percolation Water from Intensive Vegetable Cultivation Area in Japan (일본 노지채소 집약 재배지역 토양 침출수 중의 NO3-N 농도와 질소 안정동위원소 자연존재비(δ15N))

  • Park, Kwang-Lai;Choi, Jae-Seong;Baek, Hyung-Jin;Kim, Won-Il;Jung, Goo-Bok;Yun, Sun-Gang;Cho, Jin-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.3
    • /
    • pp.119-126
    • /
    • 2003
  • Nitrate-N concentrations and the corresponding ${\delta}^{15}N$ values were determined with water samples collected periodically from artesian wells (3 and 6 m deep), underdrainage and gushout waters in a Welsh onion cultivated area in the Kushibiki Fan, Saitama Prefecture, Japan. Average $NO_3-N$ concentrations in waters from 3 and 6 m wells were 25.7 and $2.8mg\;L^{-1}$, whereas ${\delta}^{15}N$ values were 3.6 and 4.7‰, respectively. The $NO_3-N$ concentration and ${\delta}^{15}N$ value of the underdrainge water were $35.5mg\;L^{-1}$ and 6.6‰, reflecting rapid input of chemical fertilizers and farmyard manure. The mean values of $NO_3-N$ concentration and ${\delta}^{15}N$ in the gushout water flown out of the edge of Kushibiki Fan were $19.4mg\;L^{-1}$ and 7.9‰, respectively. As a results the ${\delta}^{15}N$ values of the gushout water were higher than those of the artesian wells and underdrinage water. The ${\delta}^{15}N$ values of total-N and $NO_3-N$ of the soils were 6.1 and 5.10‰, respectively, while those for nitrification-inhibitor containing fertilizer and slow-release fertilizers were -6.1 and -2.2‰, respectively.

Application of Stable Isotopic Niche Space to Large River Monitoring: Analysis of Benthic Macroinvertebrates of the Seongchon Wier (안정동위원소비를 활용한 생태지위면적 분석의 수생태계 평가 가능성 분석: 영산강 승촌보의 저서성 대형무척추동물을 대상으로)

  • Seo, Dong-Hwan;Oh, Hye-Ji;Jin, Mei-Yan;Oda, Yusuke;Kim, Hyun-Woo;Jang, Min-Ho;Choi, Bohyung;Shin, Kyung-Hoon;Lee, Kyung-Lak;Lee, Su-Woong;Chang, Kwang-Hyeon
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.6
    • /
    • pp.685-694
    • /
    • 2018
  • We measured ecological niche space (ENS) using carbon and nitrogen stable isotope ratios of benthic macroinvertebrates to estimate its applicability for large river assessment. In particular, we compared ENSs of selected macroinvertebrates between upper and lower area of Seungchon Weir in Yeongsan River to estimate the impact of weir on biological community. We also measured basic water quality and community indices including benthic macroinvertebrates index (BMI) to estimate their correlations with calculated ENS. ENS was calculated using the Bayesian Stable Isotope in R statistics (package "SIBER"). The results showed that seasonal variations in water quality and community indices were found, but there was no apparent tendency between upper and lower area of the Seungchon Weir in June (before rainy season) and August (after rainy season). However, ENS of benthic macroinvertebrates markedly decreased across the weir in both June and August regardless of changes in water quality. This means the physical change of the stream due to the weir cause decrease of ecological isotopic niche space of benthic macroinvertebrates regardless of water quality, suggesting physical modification by the weir can affect the interaction between habitat condition and macroinvertebrates. Therefore, the ecological isotopic niche space can be a useful supplementary indicator for the river ecosystem assessment.

Seasonal Variation of Nitrogen Loads and Nitrogen Cycling at Tidal Flat Sediments in Nakdong River Estuary (낙동강 하구 갯벌 퇴적물에서 강을 통한 질산염 유입에 따른 질소순환의 계절 변화)

  • Lee, Ji-Young;Kwon, Ji-Nam;An, Soon-Mo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.2
    • /
    • pp.120-129
    • /
    • 2012
  • We investigated seasonal variation of sediment-water oxygen and inorganic nitrogen fluxes, and denitrification at tidal flat sediments located in the Nakdong River Estuary from July 2005 to September 2006. Net oxygen fluxes, measured with sediment incubations at in situ temperature, varied from -37.0 to $0.5mmol\;O_2\;m^{-2}\;d^{-1}$. Oxygen fluxes into the sediments from the overlying water increased due to the increased water temperature. Denitrification rate ($4{\sim}2732{\mu}mol\;N\;m^{-2}\;d^{-1}$) in this study was higher compared to the other Korean coast measured with the same method. Denitrification showed the same seasonal variation as oxygen fluxes. Denitrification rate based on $^{15}N$-nitrate showed a strong correlation with nitrate flux into the sediments from the overlying water. Denitrification via "water column supplied nitrate ($D_w$)", calculated from Isotope pairing technique, also correlated well with nitrate flux into the sediments. Nitrate from water column seems to account for seasonal variation of denitrification in Nakdong River Estuary. To understand general patterns and trends of biogeochemical processes of sediments in the Nakdong River Estuary, we categorized biogeochemical fluxes measured in this study according to direction and sizes of fluxes. Type 1(high oxygen and inorganic nitrogen fluxes into the sediments and high denitrification) occurred in summer, whereas Type 2(low oxygen and inorganic nitrogen fluxes into the sediments and low denitrification) occurred in rest of the season. Intertidal flat sediments seem to react sensitively to influence of freshwater from the Nakdong River.

Effects of Iron and chelators on Primary production and Nitrogen New Production in the Equatorial Pacific Upwelling System (적도 태평양 용승계에서 철과 킬레이트 화합물이 일차생산과 질소 신생산에 미치는 영향)

  • YANG, SUNG RYULL
    • 한국해양학회지
    • /
    • v.28 no.1
    • /
    • pp.52-68
    • /
    • 1993
  • Effects of iron and/or chelator addition on primary production in the equatorial Upwelling system were studied during the TOGA(Tropical oceans and Global Atmosphere) and EPOCS (Equatorial Pacific ocean Climate Studies) cruises in June and November-December of 1989. Changes in the phytoplankton biomass and the degree of iron stress were estimated using the changes in vivo fluorescence before and after the addition of DCMU, which is an inhibitor of photosynthetic electron transposer system. Nitrate uptake was measured using /SUP 45/N labeled KNO$_3$ to estimate the new production. When samples were taken from the Upwelling area where nitrate concentration was higher than 5 uM, there were significant differences between the control and cheated iron treatments in vivo fluorescence and in nitrate uptake capacity. However, CFC (Cellular fluorescence capacity) did not show any significant difference between the control and treatments until nutrient limitation becomes severse and cells become shifted-down. Outside of the Upwelling area where surface nitrate concentration was low (below 0.5 uM), there was no significant difference between the control and treatments in vivo fluorescence and CFC. It is evident that primary and new production in the equatorial Pacific Upwelling region are limited by the availability of iron. However, the physiology of phytoplankton indigenous to this region does not appear to be iron stressed judging from CFC values.

  • PDF

Variation of Nitrate Concentrations and δ15N Values of Seawater in the Drake Passage, Antarctic Ocean (남극해 드레이크해협 해수의 질산염 농도와 질소동위원소 값의 변화)

  • Jang, Yang-Hee;Khim, Boo-Keun;Shin, Hyoung-Chul;Sigman, Daniel M.;Wang, Yi;Hong, Chang-Su
    • Ocean and Polar Research
    • /
    • v.30 no.4
    • /
    • pp.407-418
    • /
    • 2008
  • Seawater samples were collected at discrete depths from five stations across the polar front in the Drake Passage (Antarctic Ocean) by the $20^{th}$ Korea Antarctic Research Program in December, 2006. Nitrate concentrations of seawater increase with depth within the photic zone above the depth of Upper Circumpolar Deep Water (UCDW). In contrast, ${\delta}^{15}N$ values of seawater nitrate decrease with depth, showing a mirror image to the nitrate variation. Such a distinct vertical variation is mainly attributed to the degree of nitrate assimilation by phytoplankton as well as organic matter degradation of sinking particles within the surface layer. The preferential $^{14}{NO_3}^-$ assimilation by the phytoplankton causes $^{15}{NO_3}^-$ concentration to become high in a closedsystem surface-water environment during the primary production, whereas more $^{14}{NO_3}^-$ is added to the seawater during the degradation of sinking organic particles. The water-mass mixing seems to play an important role in the alteration of ${\delta}^{15}N$ values in the deep layer below the UCDW. Across the polar front, nitrate concentrations of surface seawater decrease and corresponding ${\delta}^{15}N$ values increase northward, which is likely due to the degree of nitrate utilization during the primary production. Based on the Rayleigh model, the calculated ${\varepsilon}$ (isotope effect of nitrate uptake) values between 4.0%o and 5.8%o were validated by the previously reported data, although the preformed ${\delta}^{15}{{NO_3}^-}_{initial}$ value of UCDW is important in the calculation of ${\varepsilon}$ values.

Accumulation of Organonitrogen Pesticides in Fishes and Amphibians from the Basin of Major Rivers of S. Korea (우리 나라 주요 하천유역에 서식하는 양서류 및 어류의 유기질소계 농약류 축적)

  • Oh, Dong-Jin;Kim, Young-Bok;Lee, Ji-Young;Moon, Ji-Yong;Jeong, Gi-Ho
    • Analytical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.489-495
    • /
    • 2002
  • In this study, we determined distribution status of organonitrogen pesticides such as trifluralin, atrazine, metribuzin, alachlor, malathion, nitrofen, permethrin, cypermethrin, fenvalerate, and parathion accumulated in the fresh water fishes and amphibians. We collected those samples at 31 sites from the basin of major rivers, and separated the muscular tissue as a final sample for analysis. In the pretreatment process, lipid was eliminated by using acetonitrile and n-hexane, and pesticides were reextracted with dichloromethane. The extract was dehydrated and concentrated, and then cleaned it up by passing the Florisil column, and pesticide content was finally determined by using a GC-MS system after introducing isotope labelled references. The accumulation level was observed in the range of $0.17{\sim}6.8{\mu}g/kg$ in amphibians and $0.26{\sim}16{\mu}g/kg$ in fishes including cypermethrin as $16{\mu}g/kg$.

Origin and Source Appointment of Sedimentary Organic Matter in Marine Fish Cage Farms Using Carbon and Nitrogen Stable Isotopes (탄소 및 질소 안정동위원소를 활용한 어류 가두리 양식장 내 퇴적 유기물의 기원 및 기여도 평가)

  • Young-Shin Go;Dae-In Lee;Chung Sook Kim;Bo-Ram Sim;Hyung Chul Kim;Won-Chan Lee;Dong-Hun Lee
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.2
    • /
    • pp.99-110
    • /
    • 2022
  • We investigated physicochemical properties and isotopic compositions of organic matter (δ13CTOC and δ 15NTN) in the old fish farming (OFF) site after the cessation of aquaculture farming. Based on this approach, our objective is to determine the organic matter origin and their relative contributions preserved at sediments of fish farming. Temporal and spatial distribution of particulate and sinking organic matter(OFF sites: 2.0 to 3.3 mg L-1 for particulate matter concentration, 18.8 to 246.6 g m-2 day-1 for sinking organic matter rate, control sites: 2.0 to 3.5 mg L-1 for particulate matter concentration, 25.5 to 129.4 g m-2 day-1 for sinking organic matter rate) between both sites showed significant difference along seasonal precipitations. In contrast to variations of δ13CTOC and δ15NTN values at water columns, these isotopic compositions (OFF sites: -21.5‰ to -20.4‰ for δ13 CTOC, 6.0‰ to 7.6‰ for δ15NTN, control sites: -21.6‰ to -21.0‰ for δ13CTOC, 6.6‰ to 8.0‰ for δ15NTN) investigated at sediments have distinctive isotopic patterns(p<0.05) for seawater-derived nitrogen sources, indicating the increased input of aquaculture-derived sources (e.g., fish fecal). With respect to past fish farming activities, representative sources(e.g., fish fecal and algae) between both sites showed significant difference (p<0.05), confirming predominant contribution (55.9±4.6%) of fish fecal within OFF sites. Thus, our results may determine specific controlling factor for sustainable use of fish farming sites by estimating the discriminative contributions of organic matter between both sites.

Distribution of Fish Assemblage and Stable Isotope Composition of Reeds according to Geomorphic Characteristics of Lagoons along the East Sea (동해안 석호의 지형학적인 특성에 따른 어류군집분포와 갈대의 안정동위원소비)

  • Lee, Jaeyong;Park, Seungchul;Kim, Minseob;Choi, Jae-Seok;Lee, Kwangyeol;Shin, Kyunghoon
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • Abstract The purpose of study is to identify the relationship between stable isotope composition of reed stems in coastal and understand the structure of the fish community in 10 lagoons along the East Sea. The fish species composition (particularly, anadromous fish species) and relative abundance of trophic guilds was influenced by difference of geomorphic characteristics among lagoons. Reed stems ${\delta}^{13}C$ and ${\delta}^{15}N$ values ranged from $-28.40{\pm}0.11$‰ to $-26.87{\pm}0.25$‰ and $-1.09{\pm}1.45$‰ to $12.08{\pm}0.53$‰, respectively. The differences in reed stem ${\delta}^{15}N$ values might be associated with anthropogenic landuse and the geomorphic characteristics among lagoons. These results provide useful information to improve the conservation of fish habitats (biodiversity), preserve lagoon habitats and contribute to watershed management effect against anthropogenic pollution from watershed in these lagoon ecosystems.

Physiological Adaptation of Nitrate Uptake by Phytoplankton Under Simulated Upwelling Conditions (모의 용승조건하에서 식물 플랑크톤 질산염 흡수기작의 생리적 적응)

  • YANG Sung Ryull
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.5
    • /
    • pp.782-793
    • /
    • 1997
  • To study the physiological adaptation (shift-up) of phytoplankton under the simulated upwelling conditions, nitrate uptake capacity of Dunaliella tertiolecta batch culture was measured in the laboratory using the stable isotope $^{15}N-KNO_3$. Contrary to the expected, there was no significant relationship between the maximum $V_{NO3}$ (nitrogen specific nitrate uptake rate) and the initial nitrate concentration. However, there was a strong relationship between the maximum $\rho_{NO3}$ (nitrate transport rate) and the initial nitrate concentration of $<25\;{\mu}M$, which was also influenced by the physiological status of the culture. The increase in $V_{NO3}$ was mainly due to the increase in PON (particulate organic nitrogen) concentration and partly due to the increase in $V_{NO3}$. When the phytoplankton population was severely shifted-down, the physiological adaptation of nitrate uptake was significantly inhibited at high initial nitrate concentrations. The timing of the maximum $V_{NO3}$ or $\rho_{NO3}$ was related to the initial nitrate concentration. At higher initial nitrate concentrations, maxima in $V_{NO3}$ and $\rho_{NO3}$ occurred 1 or 2 days later than at lower nitrate concentrations. This relationship was the opposite to the prediction from the shift-up model of Zimmerman et al. (1987), The shift-up process is apparently controlled by an internal time sequence and the initial nitrate concentration, but the magnitude of $V_{NO3}$ was affected little by changes in nitrate concentration.

  • PDF