• Title/Summary/Keyword: 질소산화물 발생량

Search Result 72, Processing Time 0.027 seconds

석탄가스화복합발전(IGCC)

  • 대한전기협회
    • JOURNAL OF ELECTRICAL WORLD
    • /
    • s.452
    • /
    • pp.29-34
    • /
    • 2014
  • 2014년 5월 한 달 간 우리나라에서 석탄을 이용해 생산한 발전량은 약 1만5,748GW에 달한다. 이는 국내 총 발전량 중 38%에 해당하는 양이다. 특히 유연탄의 경우 kWh당 정산단가가 61.6원에 불과해 원자력(55.4원) 다음으로 경제성이 높은 발전원에 속한다. 그러나 석탄화력의 경우 황산화물, 질소산화물 및 먼지와 지구온난화의 주범으로 꼽히는 온실가스를 배출하고 있어 항상 논란의 대상이 된다. 2011년 기준으로 국내 $CO_2$ 배출량의 약 1/3 정도가 전력분야에서 발생했는데, 이 중 대부분은 석탄화력에서 배출됐다. 즉 환경을 생각하면 비중을 줄여 나가야 하는 것이 맞지만, 경제성 및 효율성을 고려하면 반드시 필요한 발전원이 석탄화력인 셈이다. 이에 비단 우리나라뿐만 아니라 전 세계 전력 산업계에서는 석탄화력의 효율은 높이면서, 온실가스 배출은 줄일 수 있는 기술개발에 적극 나서고 있다. 그 기술 중 가장 현실적이면서 대표적으로 떠오른 분야가 바로 석탄가스화복합발전(Integrated Gasification Combined Cycle, IGCC)이다. 우리나라에서도 IGCC에 대한 관심을 지속적으로 기울여 왔고, 그 노력의 결실로 현재 태안에 국내 최초의 IGCC 실증플랜트를 건설 중에 있다. 현재 IGCC 기술개발은 어느 단계까지 와 있는지, 또 국내외 시장은 얼마나 성장될 것으로 예상되는지 자세히 정리해봤다.

  • PDF

Effect of Ozone Injection into Exhaust Gas on Catalytic Reduction of Nitrogen Oxides (촉매 공정의 배기가스 질소산화물 저감 성능에 미치는 오존주입의 영향)

  • Yun, Eun-Young;Mok, Young-Sun;Shin, Dong-Nam;Koh, Dong-Jun;Kim, Kyong-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.330-336
    • /
    • 2005
  • The ozone injection method was proposed to improve the catalytic process for the removal of nitrogen oxides ($NO_x$). Nitric oxide (NO) in the exhaust gas was first oxidized to nitrogen dioxide ($NO_2$) by ozone produced by dielectric barrier discharge, and then the exhaust gas containing the mixture of NO and $NO_2$ was directed to the catalytic reactor where both NO and $NO_2$ were reduced to $N_2$ in the presence of ammonia as the reducing agent. A commercially available $V_2O_5-WO_3/TiO_2$ catalyst was used as the catalytic reactor. The $NO_2$ content in the mixture of NO and $NO_2$ was changed by the amount of ozone added the exhaust gas. The effect of reaction temperature, initial $NO_x$ concentration, feed gas flow rate, and ammonia concentration on the removal of $NO_x$ at various $NO_2$ contents was examined and discussed. The increase in the content of $NO_2$ by the ozone injection remarkably improved the performance of the catalytic reactor, especially at low temperatures. The present ozone injection method appears to be promising for the improvement of the catalytic reduction of $NO_x$.

A Study on Investigate the Suitability of ${NH_4}^+$ Applications of Food Waste Water Instead of Urea in the Incineration of Municipal Solid Waste (생활폐기물 소각시 요구되는 요소수의 대체물질로 음식물 폐수 속의 암모니아 적용에 관한 연구)

  • Go, Sung Gyoo;Cho, Yong Kun;Lee, Young Shin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.4
    • /
    • pp.97-105
    • /
    • 2012
  • This study examined for possibility of the food wastewater incineration treatment method as one of overland treatment method by incineration through liquefied spray of food wastewater when incinerating domestic wastes under operation and for the relationship, etc of air discharge material discharged in incineration, and the results of study are as follow: The food wastewater as one of overland treatment method was analysed 94-96% of moisture contents. Temperature of incinerator outduct during mixed incineration of food wastewater with MSW was average $897^{\circ}C$ and incineration of only MSW was $925^{\circ}C$. Temperature of the mixed incineration of food wastewater was dropped about $28^{\circ}C$ by incineration of only MSW. Concentration of nitrogen oxides(NOx) among air discharge gases was studied by 50ppm, 46ppm when inputting $200{\ell}/hr$, $300{\ell}/hr$ into the incinerator as the quantity of food wastewater. In the mixed incineration of food wastewater, generation speed of scales in the inside of a tubular exhaust gas boiler became rapid and the scale generation quantity became large but the exhaust gas boiler normally operated since scales were removed in cleaning of the tube with a compressive air cleaning facility and there was no opening clogging phenomena in a filter cloth of the filtering dust collector. The overland treatment method, not ocean dumping of food wastewater can be proposed as a technology since mixed incineration of food wastewater with MSW in the existing domestic waste incineration plant is possible, and operation costs of the incineration facility were reduced since use of chemicals such as ammonia and urinary hydrogen ion excretion, etc used in incineration facilities for removing nitrogen oxides(NOx).

A Study of Cold Flow Characteristics of a Flue Gas Recirculation Burner using Coanda Nozzles (코안다 노즐을 이용한 배기가스 재순환 버너의 냉간 유동 특성에 관한 연구)

  • Ha, Ji Soo;Park, Chan Hyuk;Shim, Sung Hun;Jung, Sang Hyun
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.152-158
    • /
    • 2016
  • Nitrogen oxide is generated by the chemical reaction of oxygen and nitrogen in higher temperature environment of combustion facilities. The NOx reduction equipment is generally used in the power plant or incineration plant and it causes enormous cost for the construction and maintenance. The flue gas recirculation method is commonly adopted for the reduction of NOx formation in the combustion facilities. In the present study, the computational fluid dynamic analysis was accomplished to elucidated the cold flow characteristics in the flue gas recirculation burner with coanda nozzles in the flue gas recirculation pipe. The inlet and outlet of flue gas recirculation pipes are directed toward the tangential direction of circular burner not toward the center of burner. The swirling flow is formed in the burner and it causes the reverse flow in the burner. The ratio of flue gas recirculation flow rate with the air flow rate was about 2.5 for the case with the coanda nozzle gap, 0.5mm and it was 1.5 for the case with the gap, 1.0mm. With the same coanda nozzle gap, the flue gas recirculation flow rate ratio had a little increase when the air flow rate changes from 1.1 to 2.2 times of ideal air flow rate.

A Study on the Flow Entrainment Characteristics of a Coaxial Nozzle Used in a MILD Combustor with the Change of Nozzle Position and Flow Condition (MILD 연소로에서 노즐의 위치와 유동 조건에 따른 유입량 특성에 관한 연구)

  • Shim, Sung-Hoon;Ha, Ji-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.2
    • /
    • pp.103-108
    • /
    • 2012
  • A MILD (Moderate and Intense Low oxygen Dilution) combustor decreases NOx formation effectively during the combustion process and NOx formation is affected significantly by the exhaust gas entrainment rate toward fuel and air. The present study focused on the new MILD combustor, which has coaxial cylindrical tube. The outside tube of the new MILD combustor corresponds to the exhaust gas passage and the inner side tube is the furnace passage. The connection pipe is set between the outer side and the inner side tubes and coaxial air nozzle is inserted at the center of the connection pipe. A numerical analysis is accomplished to elucidate the characteristics of exhaust gas entrainment toward the inner furnace with the changes of air nozzle exit velocity, nozzle diameter, nozzle exit position and exhaust gas side pressure. The entrainment rate is proportional to the square root of air nozzle exit velocity and negatively proportional to the pressure difference between the exhaust gas side and furnace side pressures. The effect of air nozzle exit position is not considerable on the exhaust gas entrainment.

A Study on the Effect of Sulfur Content in Fuel Oil on the Emission of Air Pollutants According to Operating Conditions of Small Ship Engines (선박용 소형 엔진에서 연료유 내 황 함유량이 운전 조건에 따라 대기오염물질 배출에 미치는 영향에 관한 연구)

  • Lee, Kyeong-yeol;Rho, Beom-seok;Lee, Won-Ju;Choi, Jae-hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.834-840
    • /
    • 2018
  • In this study, the characteristics of air pollutant emissions from ships' engines have been investigated by conducting E2 and E3 cycle mode tests. A engine 360Ps (Doosan L126TIH engine) and 400kW dynamometer Horiba-Schenck were utilized for engine tests. The FTIR analyzer and SPC were used to measure exhaust gas (NOx, SOx etc.) and PM (particulate matter), respectively. The results showed that the emissions of THC and CO produced from engine were increased with the increase of sulfur content in fuel oils at E2 and E3 cycle modes. The kinetic viscosity of the fuel increased as the sulfur content of the fuel increased, thereby the specific fuel oil consumption (SFC) of the engine improved. This result is considered to be due to improved combustion conditions due to increased average diameters of sprayed particles and due to increased kinetic viscosity under constant fuel injection pressure in this study. In the case of NOx emission, this study showed no significant change in amount of sulfur content.

Investigation of Tar/soot Yield of Bituminous and Low Rank Coal Blends (발전용 역청탄과 저열량탄 혼소시 Tar/Soot의 배출 특성 연구)

  • Lee, Byung Hwa;Kim, Jin Ho;Kim, Gyu Bo;Kim, Seng Mo;Jeon, Chung Hwan
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.42-48
    • /
    • 2014
  • Soot and tar which were derived from combustion or pyrolysis processes in Puverized Coal(PC) furnace or boiler have been significantly dealing in a radiative heat transfer and an additional source of NOx. Furthermore, the increasing for the use of a coal with low caloric value gives rise to a lot of tar-soot yield and LOI in a recycled ash for using cement materials. So, the ash with higher tar-soot yield and LOI can not recycle due to decreased strength of concrete. In this study, tar-soot yields and flame structures were investigated using the LFR for a blending combustion with bituminous coal and sub-bituminous coal. Also, The investigation were conducted as each single coals and blending ratio. The coals are used in a doestic power plant. In the experimental results, sub-bituminous coal with high volatile contents shows longer soot cloud length than bituminous coal, but overall flame length was shorter than bituminous coal. Tar-soot yields of sub-bituminous coal is lower than those of bituminous coal. Combustion characteristics are different between single coal and blended coal. Therefore, finding an optimal coal blending ratio according to coal rank effects on tar-soot yields.

Current Status of Ship Emissions and Reduction of Emissions According to RSZ in the Busan North Port (부산 북항에서의 선박 배출물질 현황과 선속제한에 의한 배출량 감소 연구)

  • Lee, Bo-Kyeong;Lee, Sang-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.5
    • /
    • pp.572-580
    • /
    • 2019
  • In view of the numerous discussions on global environmental issues, policies have been implemented to limit emissions in the field of marine transport, which accounts for a major part of international trade. In this study, a ship's emissions were calculated by applying the engine load factor to determine the total quantity of emissions based on the ship's speed reduction. For ships entering and leaving the Busan North Port from 1 January to 31 December 2017, emissions were calculated and analyzed based on the ship's type and its speed in the reduced speed zone (RSZ), which was set to 20 nautical miles. The comparison of the total amount of emissions under all situations, such as cruising, maneuvering, and hotelling modes revealed that the vessels that generated the most emissions were container ships at 76.1 %, general cargo ships at 7.2 %, and passenger ships at 6.8 %. In the cruising and maneuvering modes, general cargo ships discharged a lesser amount of emission in comparison with passenger ships; however, in the hotelling mode, the general cargo ships discharged a larger amount of emission than passenger ships. The total emissions of nitrogen oxides (NOx), sulphur oxides (SOx), particulate matter (PM), and volatile organic compounds (VOC), were 49.4 %, 45 %, 4 %, and 1.6 %, respectively. Furthermore, the amounts of emission were compared when ships navigated at their average service speed, 12, 10, and 8 knots in the RSZ, respectively. At 12 knots, the reduction in emissions was more than that of the ships navigating at their average service speed by 39 % in NOx, 40 % in VOC, 42 % in PM, and 38 % in Sox. At 10 knots, the emission reductions were 52 %, 54 %, 56 %, and 50 % in NOx, VOC, PM, and Sox, respectively. At 8 knots, the emission reductions were 62 %, 64 %, 67 %, and 59 % in NOx, VOC, PM, and Sox, respectively. As a result, the emissions were ef ectively reduced when there was a reduction in the ship's speed. Therefore, it is necessary to consider limiting the speed of ships entering and leaving the port to decrease the total quantity of emissions.

A Study on the Installation of SCR System for Generator Diesel Engine of Existing Ship (기존 선박의 디젤발전기용 SCR 시스템 설치에 관한 연구)

  • Ryu, Younghyun;Kim, Hongryeol;Cho, Gyubaek;Kim, Hongsuk;Nam, Jeonggil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.412-417
    • /
    • 2015
  • The IMO MEPC has been increasingly strengthening the emission standard for marine environment protection. In particular, nitrogen oxide (NOx) emissions of all ocean-going ships built from 2016 will be required to comply with the Tier-III regulation. In this study, a vanadia based SCR (Selective Catalytic Reduction) system developed for ship application was installed on a diesel engine for power generation of the training ship T/S SAENURI in Mokpo National Maritime University. For the present study, the exhaust pipeline of the generator diesel engine was modified to fit the urea SCR system. This study investigated the NOx reduction performance according to the two kind of injection method of urea solution (40%): Auto mode through the PLC (Programable Logic Control) and Manual mode. We were able to find the ammonia slip conditions when in manual mode method. So, the optimal urea injection quantity can be controlled at each engine load (25, 35, 50%) condition. It was achieved 80% reduction on nitrogen oxide. Furthermore, we found that the NOx reduction performance was better with the load up-down (while down to 25% from 50%) than the load down-up (while up to 50% from 25%) test.

A Study on Installation of Removal Device for Volatile Organic Compounds from Petrochemical Plant (석유화학 공장에서 VOCs 제거시설 설치사례 연구)

  • 김석택
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.2
    • /
    • pp.95-101
    • /
    • 2000
  • High growth of economy and industrial development was produced every air pollutants, that is, SOx, NOx, dust, VOCs and malodorous gas was produced. Recently, volatile organic compounds(VOCs) was bring about very serious environmental problems. Ulsan petrochemical complex was densely a large scale of petrochemical plant. This study was carried out to select treatment equipment of VOCs produced from petrochemical plant, and has compared with Carbon filter, Regenerative thermal oxidation(RCO) and Flare stack for technical merit and demerit but also initial investment and operating cost.

  • PDF