Word mismatch is the most significant problem that causes low performance in question classification, whose questions consist of only two or three words that expressed in many different ways. So, it is necessary to apply word association in question classification. In this paper, we propose question classification method using translation-based language model, which use word translation probabilities for question-question pair that is learned in the same category. In the experiment, we prove that translation probabilities of question-question pairs in the same category is more effective than question-answer pairs in total collection.
Social media refers to the content, which are created by users, such as blogs, social networks, and wikis. Recently, question-answering (QA) communities, in which users share information by questions and answers, are regarded as a kind of social media. Thus, QA communities have become a huge source of information for the past decade. However, it is hard for users to search the exact question-answer that is exactly matched with their needs as the number of question-answers increases in QA communities. This paper proposes an approach for classifying a question into three categories (information, opinion, and suggestion) according to the purpose of the question for more accurate information retrieval. Specifically, our approach is based on modified Na$\ddot{i}$ve Bayes classifier which uses structural characteristics of QA documents to improve the classification accuracy. Through our experiments, we achieved about 71.2% in classification accuracy.
Annual Conference on Human and Language Technology
/
2014.10a
/
pp.201-205
/
2014
국립국어원의 온라인 가나다 서비스는 한국어에 대한 다양한 질문과 정확한 답변을 제공한다. 만일 새롭게 등록되는 질문에 대해 유사한 질문을 자동으로 찾을 수 있다면, 질문자는 빠른 시간에 답변을 얻을 수 있고 서비스 관리자는 수동 답변 작성의 부담을 덜 수 있다. 본 논문에서는 국립국어원 질의응답게시판의 특성을 분석하여 질문의 주제를 6가지로 분류하고, 주제 분류 정보와 벡터 유사도, 수열 유사도를 결합하여 유사한 질문을 검색하는 시스템을 제안한다. 평가에서는 본 논문에서 제시한 주제 분류 정보를 활용한 결과 1위 정답 검색 정확률이 향상되는 결과를 얻었다. 최종 실험에서는 MRR이 0.62, 정답이 1위, 5위내에 검색될 확률은 각각 54.2%, 78.2%를 보였다.
Proceedings of the Korean Information Science Society Conference
/
2011.06c
/
pp.198-201
/
2011
본 연구는 현재 널리 사용되고 있는 소셜네트워크 속에서 일반 사용자들이 의료 도메인의 전문가들과 쉽게 질문과 응답을 주고 받을 수 있게 해주는 서비스 개발을 위한 기초 연구로써, 사용자의 문서를 분석하여 질문을 추출해 내고 어떤 의료 도메인에 해당하는 질문인지 분류하는 연구이다. 한글로 구성된 문서 속에서 질문에 해당하는 형태소 분석 방법을 이용하야 질문을 추출을 한 다음 질문 속의 단어 들을 분석하여 KORLEX를 이용한 단어간의 관계성을 분석하여 도메인을 분류하는 작업을 거친다. 또한 본 연구는 텍스트마이닝 기법과 인공지능의 분류 기법을 응용하여 소셜네트워크 속에서 질문과 응답을 분석하여, 의료 도메인의 전문가들이 볼 수 있게 함으로써, 소셜네트워크를 이용한 양방향의 질의응답 서비스를 제공 한다. 이 같은 양방향 질의응답 서비스를 통해 헬스케어 및 의료 관리 서비스를 받을 수 있다. 본 논문은 소셜네트워크 상에서 사용자들이 올린 헬스케어에 관련된 질문들을 추출하고 분류해 주는 과정에 한정하여 진행된 결과를 기술한다.
Online Q&A for the National Institute of the Korean Language provides expert's answers for questions about the Korean language, in which many similar questions are repeatedly posted like other Q&A boards. So, if a system automatically finds questions that are similar to a user's question, it can immediately provide users with recommendable answers to their question and prevent experts from wasting time to answer to similar questions repeatedly. In this paper, we set 5 classes of questions based on its topic which are frequently asked, and propose to classify questions to those classes. Our system searches similar questions by combining topic similarity, vector similarity and sequence similarity. Experiment shows that our method improves search correctness with topic classification. In experiment, Mean Reciprocal Rank(MRR) of our system is 0.756, and precision for the first result is 68.31% and precision for top five results is 87.32%.
Journal of the Korean Society for Library and Information Science
/
v.49
no.4
/
pp.401-417
/
2015
Question taxonomy is one of main approaches to understand the questioner's information need so that we can assign relevant answerers to the question submitted by the user. The goal of this study is to investigate question taxonomy of question and answering services, which are available online and in libraries and understand the characteristics of question answering services by type. In order to achieve the goal, this study examines the types of questions appeared in literature, specifically focusing on social reference, question answering systems, and reference services, and then provides a summary of question taxonomy found in question answering services.
Proceedings of the Korean Information Science Society Conference
/
2000.04b
/
pp.253-255
/
2000
어떠한 질문에 대한 구체적 해답을 얻고 싶은 경우, 일반적인 정보 검색이 가지는 문제점은 검색 결과가 사용자가 찾고자 하는 답이라 하기 보다는 해답을 포함하는(또는 포함하지 않는) 문서의 집합이라는 점이다. 사용자가 후보문서를 모두 읽을 필요 없이 빠르게 원하는 정보를 얻기 위해서는 검색의 결과로 문서집합을 제시하기 보다는 실제 원하는 답을 제공하는 시스템의 필요성이 대두된다. 이를 위해 기존의 TF-IDF(Term Frequency-Inversed Document Frequency)기반의 정보검색의 방삭에 자연언어처리(Natural Language Processing)를 이용한 질문의 분류와 문서의 사전 표지(Tagging)를 사용할 수 있다. 본 연구에서는 매년 NIST(National Institute of Standards & Technology)와 DARPA(Defense Advanced Research Projects Agency)주관으로 열리는 TREC(Text REtrieval Conference)중 1999년에 열린 TREC-8의 사용자의 질문(Question)에 대한 답(Answer)을 찾는 ‘Question & Answer’문제의 실험 환경에서 질문을 특징별로 분류하고 검색 대상의 문서에 대한 사전 표지를 이용한 정보검색 시스템으로 사용자의 질문(Question)에 대한 해답을 보다 정확하고 효율적으로 제시할 수 있음을 실험을 통하여 보인다.
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.367-370
/
2018
웹 또는 모바일 사용자는 고객 센터에 구축된 자주 묻는 질문을 이용하여 원하는 서비스를 제공받는다. 그러나 자주 묻는 질문은 사용자가 직접 핵심어를 입력하여 검색된 결과 중 필요한 정보를 찾아야 하는 어려움이 있다. 이러한 문제를 해결하기 위해 본 논문에서는 사용자 질의를 입력 받아 질의에 해당하는 클래스를 분류해주는 문장 분류 모델을 제안한다. 제안모델은 웹이나 모바일 환경의 오타나 맞춤법 오류에 대한 강건함을 위해 자소 단위 합성곱 신경망을 사용한다. 그리고 기계 번역 이외에도 자연어 처리 부분에서 큰 성능 향상을 보여주는 주의 집중 방법과 클래스 임베딩을 이용한 문장 분류 시스템을 사용한다. 457개의 클래스 분류와 769개의 클래스 분류에 대한 실험 결과 Micro F1 점수 기준 81.32%, 61.11%의 성능을 보였다.
Annual Conference on Human and Language Technology
/
2019.10a
/
pp.309-314
/
2019
본 연구는 오픈도메인 자연어 질의문 유형을 '질문 초점(Question Focus)'에 따라 분류하고, 기계학습 기반 질의문 유형 분류기의 성능 향상을 위한 주석 말뭉치 구축을 목표로 한다. 오픈도메인 질의문 분석을 통해 의문사 등의 키워드 기반 질의문 유형 분류의 한계를 설명하고, 질의문 내의 비명시적인 의미자질을 고려한 질문 초점 기반 질의문 유형 분류 기준을 정의하였다. 이 기준에 따라 구축된 112,856 문장의 주석 말뭉치를 기계학습(CNN) 기반 문장 분류 시스템의 학습 데이터로 사용하여 실험한 결과 F1-Score 97.72%성능을 보였다. 또한 이를 카카오 오픈도메인 질의응답시스템에 적용하여 질의문 확장을 위한 의미 자질로 사용하였고 그 결과 전체 시스템 성능을 1.6%p 향상시켰다.
Yim In Sung;Sung Hyun Il;Sohn Sangmo;Ahn Young Sook;Kim Bong Gyu;Choe Seung-Urn
Journal of the Korean earth science society
/
v.26
no.6
/
pp.551-559
/
2005
The Q&A service of the official Korea Astronomy and Space Science Institute (KASI) webpage was installed in 2000 and have been actively used since then. In this paper, we analyze the questions asked through the Q&A service and the number of inquiries with the aid of statistical methods. We also study the contents of the questions. Specifically, we have created statistics of questions and inquiries that go monthly and yearly, and have developed categories to analyze the characteristics of questions in regards to their cognitive aspects. Each question is categorized into two elements based on their recognitive aspect: science knowledge or science study. Each element also has sub-categories that help readers understand the characteristics of the questions. For the analysis, we used a sample consisted of questions from July to December, 2004. Through this study, we achieved a better understanding of the questions asked by the Q&A service. We are planning to improve the quality of the Q&A service by extending the size of the FAQ(frequently asked questions). Throughout this study, we find that the number of questions are increasing with time, and the overall quality of the questions is improving. As we expect the number of people using our Q&A service to increase and the questions to get more difficult to answer, development of improved content is required.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.