• 제목/요약/키워드: 질문분류

검색결과 239건 처리시간 0.021초

질문대답 아카이브에서 어휘 연관성을 이용한 질문 분류 (Question Classification Based on Word Association for Question and Answer Archives)

  • 김설영;이경순
    • 정보처리학회논문지B
    • /
    • 제17B권4호
    • /
    • pp.327-332
    • /
    • 2010
  • 보통 두 세 개의 어휘로 구성된 질문 분류에서 어휘의 다양한 표현으로 인한 어휘 불일치문제는 성능 저하의 주요 원인이다. 따라서 질문 분류에서 어휘 사이의 연관성을 반영하는 것이 필수적이다. 본 논문에서는 같은 범주의 질문-질문 쌍들에 대해 계산한 어휘 번역확률을 번역기반 언어모델에 반영하여 질문을 분류하는 방법을 제안한다. 실험에서 야후!앤써 질문대답 아카이브를 이용해서 전체 질문-대답 쌍들에 대해서 번역확률을 계산하는 것보다 같은 범주에 속하는 질문-질문 쌍들에 대해서 번역확률을 계산하는 것이 질문 분류에서 더 좋은 번역확률인 것을 증명한다.

확장된 나이브 베이즈 분류기를 활용한 질문-답변 커뮤니티의 질문 분류 (Modified Na$\ddot{i}$ve Bayes Classifier for Categorizing Questions in Question-Answering Community)

  • 연종흠;심준호;이상구
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제16권1호
    • /
    • pp.95-99
    • /
    • 2010
  • 소셜 미디어(social media)는 블로그, 소셜 네트워크, 위키 등과 같이 사용자의 참여로 만들어지는 정보 컨텐츠이다. 사용자가 작성한 질문에 다른 사용자들이 답변을하는 질문-답변 커뮤니티 서비스도 이러한 소셜 미디어의 한 가지로서 지난 몇 년간 많은 양의 정보를 축적해왔다. 하지만 축적된 질문-답변의 양이 많아질수록 이전의 질문을 정확히 검색하는 것은 점점 어려운 작업이 되고 있다. 본 논문에서는 질문-답변 커뮤니티의 효율적인 정보 검색을 위해 확장된 나이브 베이즈 분류기(Na$\ddot{i}$ve Bayes classifier)를 이용하여 질문을 그 목적에 따라 정보형, 제안형, 의견형으로 자동 분류하는 기법을 제안한다. 정확한 분류를 위해 분류기는 질문-답변 문서의 구조적인 특징을 활용한다. 실제 질문-답변 커뮤니티의 질문들에 대해 실험을 수행한 결과 71.2%의 분류 정확도를 보였다.

주제 분류를 활용한 국립국어원 질의응답 게시판 유사 질문 검색 시스템 (Similar Question Search System for Q&A board of The National Institute of the Korean Language using Topic Classification)

  • 문정민;송영호;진지환;이현섭;이현아
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2014년도 제26회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.201-205
    • /
    • 2014
  • 국립국어원의 온라인 가나다 서비스는 한국어에 대한 다양한 질문과 정확한 답변을 제공한다. 만일 새롭게 등록되는 질문에 대해 유사한 질문을 자동으로 찾을 수 있다면, 질문자는 빠른 시간에 답변을 얻을 수 있고 서비스 관리자는 수동 답변 작성의 부담을 덜 수 있다. 본 논문에서는 국립국어원 질의응답게시판의 특성을 분석하여 질문의 주제를 6가지로 분류하고, 주제 분류 정보와 벡터 유사도, 수열 유사도를 결합하여 유사한 질문을 검색하는 시스템을 제안한다. 평가에서는 본 논문에서 제시한 주제 분류 정보를 활용한 결과 1위 정답 검색 정확률이 향상되는 결과를 얻었다. 최종 실험에서는 MRR이 0.62, 정답이 1위, 5위내에 검색될 확률은 각각 54.2%, 78.2%를 보였다.

  • PDF

SNS 환경에서 양방향 헬스케어 질의응답 서비스 개발을 위한 사용자 질문 추출 및 분류 방법 연구 (Extracting and Classifying User Questions to Develop Bidirectional Healthcare Q&A Services in an SNS Environment)

  • 오교중;김승석;최호진
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(C)
    • /
    • pp.198-201
    • /
    • 2011
  • 본 연구는 현재 널리 사용되고 있는 소셜네트워크 속에서 일반 사용자들이 의료 도메인의 전문가들과 쉽게 질문과 응답을 주고 받을 수 있게 해주는 서비스 개발을 위한 기초 연구로써, 사용자의 문서를 분석하여 질문을 추출해 내고 어떤 의료 도메인에 해당하는 질문인지 분류하는 연구이다. 한글로 구성된 문서 속에서 질문에 해당하는 형태소 분석 방법을 이용하야 질문을 추출을 한 다음 질문 속의 단어 들을 분석하여 KORLEX를 이용한 단어간의 관계성을 분석하여 도메인을 분류하는 작업을 거친다. 또한 본 연구는 텍스트마이닝 기법과 인공지능의 분류 기법을 응용하여 소셜네트워크 속에서 질문과 응답을 분석하여, 의료 도메인의 전문가들이 볼 수 있게 함으로써, 소셜네트워크를 이용한 양방향의 질의응답 서비스를 제공 한다. 이 같은 양방향 질의응답 서비스를 통해 헬스케어 및 의료 관리 서비스를 받을 수 있다. 본 논문은 소셜네트워크 상에서 사용자들이 올린 헬스케어에 관련된 질문들을 추출하고 분류해 주는 과정에 한정하여 진행된 결과를 기술한다.

온라인가나다를 위한 주제 분류 기반 유사 질문 검색 시스템 (Similar Question Search System for online Q&A for the Korean Language Based on Topic Classification)

  • 문정민;송영호;진지환;이현섭;이현아
    • 인지과학
    • /
    • 제26권3호
    • /
    • pp.263-278
    • /
    • 2015
  • 국립국어원의 온라인가나다 서비스는 한국어에 대한 질문을 등록하면 전문가가 답변을 작성하는 인터넷 서비스이다. 이러한 서비스는 유사한 질문이 자주 등록되는 문제점이 있다, 만일 새롭게 등록되는 질문과 유사한 질문을 자동으로 찾아 그 질문에 대한 답변을 등록 즉시 제공한다면, 질문자는 빠른 시간에 답변을 얻을 수 있고 서비스 관리자는 수동 답변 작성의 부담을 덜 수 있다. 본 논문에서는 온라인가나다의 특성을 분석하여 자주 질문되는 다섯 개의 주제 분류를 설정하고, 주제 분류 유사도와 함께 음소와 음절단위 수열유사도와 벡터 유사도를 결합하여 유사한 질문을 검색하는 시스템을 제안한다. 평가에서는 본 논문에서 제시한 주제 분류 정보를 활용하여 검색 정확률이 향상되는 결과를 얻었다. 최종 실험에서는 Mean Reciprocal Rank(MRR)가 0.756, 정답이 1위와 5위내에 검색될 확률은 각각 68.31%, 87.32%를 보였다.

이용자 참여형 참고 서비스 개발을 위한 질문 유형 구분에 대한 문헌적 고찰 (Literature Review of Queston Taxonomy for Developing User-participatory Reference Service)

  • 박종도
    • 한국문헌정보학회지
    • /
    • 제49권4호
    • /
    • pp.401-417
    • /
    • 2015
  • 질문 분류는 질의응답과정에서 질문자의 정보요구를 이해하고 주어진 질문에 대해 적합한 답변을 제공하기 위한 중요한 방법 중의 하나이다. 이 연구의 목적은 온라인 및 도서관에서 활용 가능한 질의응답 서비스의 질문 분류체계를 조사해보고, 각 질의응답서비스의 유형별로 어떠한 특징이 있는지 살펴보고자 하였다. 이를 위해, 도서관의 참고서비스 및 온라인 상의 소셜 레프런스, 자동 질의응답 시스템을 대상으로 질문을 어떻게 분류하여 활용하고 있는지를 문헌 조사를 통해 살펴보고 종합하여 질문의 유형을 정리하였다.

대규모 문서 데이터 집합에서 Q&A를 위한 질의문 분류 기법 (A Query Classification Method for Question Answering on a Large-Scale Text Data)

  • 엄재홍;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 봄 학술발표논문집 Vol.27 No.1 (B)
    • /
    • pp.253-255
    • /
    • 2000
  • 어떠한 질문에 대한 구체적 해답을 얻고 싶은 경우, 일반적인 정보 검색이 가지는 문제점은 검색 결과가 사용자가 찾고자 하는 답이라 하기 보다는 해답을 포함하는(또는 포함하지 않는) 문서의 집합이라는 점이다. 사용자가 후보문서를 모두 읽을 필요 없이 빠르게 원하는 정보를 얻기 위해서는 검색의 결과로 문서집합을 제시하기 보다는 실제 원하는 답을 제공하는 시스템의 필요성이 대두된다. 이를 위해 기존의 TF-IDF(Term Frequency-Inversed Document Frequency)기반의 정보검색의 방삭에 자연언어처리(Natural Language Processing)를 이용한 질문의 분류와 문서의 사전 표지(Tagging)를 사용할 수 있다. 본 연구에서는 매년 NIST(National Institute of Standards & Technology)와 DARPA(Defense Advanced Research Projects Agency)주관으로 열리는 TREC(Text REtrieval Conference)중 1999년에 열린 TREC-8의 사용자의 질문(Question)에 대한 답(Answer)을 찾는 ‘Question & Answer’문제의 실험 환경에서 질문을 특징별로 분류하고 검색 대상의 문서에 대한 사전 표지를 이용한 정보검색 시스템으로 사용자의 질문(Question)에 대한 해답을 보다 정확하고 효율적으로 제시할 수 있음을 실험을 통하여 보인다.

  • PDF

클래스 임베딩과 주의 집중 순환 신경망을 이용한 자주 묻는 질문의 자동 분류 (Automatic Classification of Frequently Asked Questions Using Class Embedding and Attentive Recurrent Neural Network)

  • 장영진;김학수;김세빈;강동호;장현기
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.367-370
    • /
    • 2018
  • 웹 또는 모바일 사용자는 고객 센터에 구축된 자주 묻는 질문을 이용하여 원하는 서비스를 제공받는다. 그러나 자주 묻는 질문은 사용자가 직접 핵심어를 입력하여 검색된 결과 중 필요한 정보를 찾아야 하는 어려움이 있다. 이러한 문제를 해결하기 위해 본 논문에서는 사용자 질의를 입력 받아 질의에 해당하는 클래스를 분류해주는 문장 분류 모델을 제안한다. 제안모델은 웹이나 모바일 환경의 오타나 맞춤법 오류에 대한 강건함을 위해 자소 단위 합성곱 신경망을 사용한다. 그리고 기계 번역 이외에도 자연어 처리 부분에서 큰 성능 향상을 보여주는 주의 집중 방법과 클래스 임베딩을 이용한 문장 분류 시스템을 사용한다. 457개의 클래스 분류와 769개의 클래스 분류에 대한 실험 결과 Micro F1 점수 기준 81.32%, 61.11%의 성능을 보였다.

  • PDF

오픈도메인 질의문 자동 분류를 위한 주석 말뭉치 구축 연구 (A study on the Construction of Annotated corpora for the Automatic Classification of Open Domain Queries)

  • 안애림;이서진;최동현;김응균;남지순
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.309-314
    • /
    • 2019
  • 본 연구는 오픈도메인 자연어 질의문 유형을 '질문 초점(Question Focus)'에 따라 분류하고, 기계학습 기반 질의문 유형 분류기의 성능 향상을 위한 주석 말뭉치 구축을 목표로 한다. 오픈도메인 질의문 분석을 통해 의문사 등의 키워드 기반 질의문 유형 분류의 한계를 설명하고, 질의문 내의 비명시적인 의미자질을 고려한 질문 초점 기반 질의문 유형 분류 기준을 정의하였다. 이 기준에 따라 구축된 112,856 문장의 주석 말뭉치를 기계학습(CNN) 기반 문장 분류 시스템의 학습 데이터로 사용하여 실험한 결과 F1-Score 97.72%성능을 보였다. 또한 이를 카카오 오픈도메인 질의응답시스템에 적용하여 질의문 확장을 위한 의미 자질로 사용하였고 그 결과 전체 시스템 성능을 1.6%p 향상시켰다.

  • PDF

한국천문연구원 질문상자의 통계 및 과학탐구 질문유형 분석 (The Analysis of Statistics and Scientific Inquiries Types in Korea Astronomy and Space Science Institute Q&A Service)

  • 임인성;성현일;손상모;안영숙;김봉규;최승언
    • 한국지구과학회지
    • /
    • 제26권6호
    • /
    • pp.551-559
    • /
    • 2005
  • 본 논문에서는 한국천문연구원에서 2000년부터 운영중인 홈페이지 질문상자의 질문 및 조회 수를 통계적으로 분석하고, 그 질문 내용에 나타난 인지적 측면에서 과학탐구 유형을 분석하였다. 이를 위해 홈페이지 질문상자에 올라온 질문 및 조회 수를 월별/연도별로 통계를 작성하였으며, 질문문항이 과학탐구의 어떠한 인지적 측면이 부각되어 있는가를 분석하기 위하여 과학탐구 분석틀을 개발하였다. 질문유형 분석은 인지적 측면에서 과학지식과 과학탐구로 분류하였다. 과학적 지식의 하위유형으로 내용지식, 방법지식, 지식본성 이해로 분류하였다. 과학탐구의 하위 요소는 과학탐구 수행능력으로 분류하고 각 세부 요소를 고려하였다. 질문유형 분석틀에 따른 과학탐구 유형의 분석은 분석틀을 통해, 2004년 7월부터 12월까지 6개월간 질문상자에 질문한 703개 질문 항목에 대해 질문들의 세부 사항 및 속성들을 세부적으로 살펴서 질문유형 분석틀에 따라 분석을 시행하였다. 이 분석을 통하여 질문상자의 질문에 대한 이해와 잦은 질문들에 대한 응답을 마련하는 등, 앞으로 질문상자의 운영 방안에 대한 방향을 설정할 수 있었다. 이 분석을 통해 질문수의 증가와 함께, 질문의 내용도 일상생활 과학 지식수준을 넘어 해마다 난해해 지고 전문화 되어가고 있음을 알 수 있었다. 앞으로 질문상자의 이용자 수가 계속 증가될 것으로 예상되고, 지적 요구의 증대와 함께, 질문의 내용도 더욱 난해해 질 것으로 예상됨으로 심도 있는 콘텐츠의 개발이 필요하다.