• Title/Summary/Keyword: 진화신경회로망

Search Result 34, Processing Time 0.036 seconds

Design of Evolutionary Computing-based RBF Neural Networks (진화 컴퓨팅 기반 RBF 신경회로망의 설계)

  • 정병조;노석범;장성환;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.265-268
    • /
    • 2004
  • 본 논문은 최적화 방법인 유전자 알고리즘을 이용하여 진화 컴퓨팅 기반 RBF 신경회로망을 이용한 새로운 비선형 시스템 설계 방법을 제안한다. 비선형 시스템 설계시 문제점으로는 복잡성과 불확실성을 들수 있으며, 이러한 문제를 해결하기 위해서 지능형 모델을 사용하게 되었다. 본 논문에서는 일반적인 신경회로망보다 성능이 뛰어난 RBF 신경회로망을 사용하여 비선형 시스템을 모델링 한다. HCM 클러스터링을 이용하여 유사한 특성을 가진 비선형 데이터를 분류하여 입력으로 사용한다. 제안한 진화 컴퓨팅 기반 RBF 신경회로망을 이용한 모델의 적용 및 유용성을 비교 평가하기 위하여 비선형 학습 데이터와 테스트 데이터를 이용하여 그 우수성을 보인다.

  • PDF

Evolutionary Learning Algorithm fo r Projection Neural NEtworks (투영신경회로망의 훈련을 위한 진화학습기법)

  • 황민웅;최진영
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.74-81
    • /
    • 1997
  • This paper proposes an evolutionary learning algorithm to discipline the projection neural nctworks (PNNs) with special type of hidden nodes which can activate radial basis functions as well as sigmoid functions. The proposed algorithm not only trains the parameters and the connection weights hut also c~ptimizes the network structure. Through the structure optimization, the number of hidden node:; necessary to represent a given target function is determined and the role of each hidden node is decided whether it activates a radial basis function or a sigmoid function. To apply the algorithm, PNN is realized by a self-organizing genotype representation with a linked list data structure. Simulations show that the algorithm can build the PNN with less hidden nodes than thc existing learning algorithm using error hack propagation(EE3P) and network growing strategy.

  • PDF

A New Evolutionary Programming Algorithm using the Learning Rule of a Neural Network for Mutation of Individuals (신경회로망의 학습 알고리듬을 이용하여 돌연변이를 수행하는 새로운 진화 프로그래밍 알고리듬)

  • 임종화;최두현;황찬식
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.3
    • /
    • pp.58-64
    • /
    • 1999
  • Evolutionary programming is mainly characterized by two factors; one is the selection strategy and the other the mutation rule. In this paper, a new mutation rule that is the same form of well-known backpropagation learning rule of neural networks has been presented. The proposed mutation rule adapts the best individual's value as the target value at the generation. The temporal error improves the exploration through guiding the direction of evolution and the momentum speeds up convergence. The efficiency and robustness of the proposed algorithm have been verified through benchmark test functions.

  • PDF

Attitude Control of Model Helicopter systems using the WAVENET (WAVENET을 이용한 모형 헬리콥터 시스템의 자세 제어)

  • 박두환;이준탁
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.307-310
    • /
    • 2003
  • 본 논문에서는 대표적인 비선형 동특성을 가지는 실제 헬리콥터의 회전 띤 자세 운동을 근사화한 모형 헬리콥터의 시스템을 소개하고 이 시스템의 정지 자세 제어를 목표로 직접 적응 웨이브렛 신경회로망 제어기를 다음의 과정에 의해 만든다. 우선 상태 공간에 적용할 웨이브렛 기준 함수를 정의하고 나서 제어기로 들어오는 입력 값의 대략적인 범위와 특성을 파악해서 웨이브렛 이론에 근거해 신축(dilation)과 이동(traslation) 변수 값을 선택하여 초기 적응 웨이브렛 신경회로망 제어기를 건설한다. 마지막으로 시스템의 안정화 제어를 위하여 선택, 교배, 돌연변이의 진화연산자에 의해 일시에 최적의 구조와 결합가중치로 진화시켜 가는 새로운 형태의 ENNC를 제안하여 연결 가중치(weight)를 조정한다. 이 직접 적응 웨이브렛 신경회로망 제어기를 비선형 시스템인 모형 헬리콥터 시뮬레이터에 적용하여 제안한 제어기의 견실성 및 그 우수성을 입증하고자 한다.

  • PDF

Evolutionary Learning of Mobile Robot Behaviors (이동 로봇 행위의 진화적 학습)

  • 심인보;윤중선
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.207-210
    • /
    • 2002
  • 진화와 학습 사이의 상호 연관성을 연구하기 위해 인공 진화기법(artificial evolutionary algorithm)과 신경회로망(neural networks)을 이용한 학습 기법들이 사용되어 왔다. 신경 회로망 구조를 가지는 이동 로봇의 제어기의 구조와 파라미터를 결정하기 위한 방법으로 진화적 학습(evolutionary learning) 방법이 제안되었다. 제안된 방법에서 진화적 학습은 실제 로봇을 통해 on-line 방식으로 이루어지며, 장애물 회피 문제를 통해 유용성을 검증하고 진화 과정에 학습이 미치는 영향을 살펴보았다. 그리고 수학적으로 제시되기 힘든 진화 학습의 평가에 설계자의 개입을 허용하는 인터액티브 진화 알고리즘(interactive evolutionary algorithm)방법을 모색해 보았다.

A Study on Stabilization Control of Inverted Pendulum System using Evolving Neural Network Controller (진화 신경회로망 제어기를 이용한 도립진자 시스템의 안정화 제어에 관한 연구)

  • 김민성;정종원;성상규;박현철;심영진;이준탁
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.243-248
    • /
    • 2001
  • The stabilization control of Inverted Pendulum(IP) system is difficult because of its nonlinearity and structural unstability. Thus, in this paper, an Evolving Neural Network Controller(ENNC) without Error Back Propagation(EBP) is presented. An ENNC is described simply by genetic representation using an encoding strategy for types and slope values of each active functions, biases, weights and so on. By an evolutionary programming which has three genetic operation; selection, crossover and mutation, the predetermine controller is optimally evolved by updating simultaneously the connection patterns and weights of the neural networks. The performances of the proposed ENNC(PENNC) are compared with the ones of conventional optimal controller and the conventional evolving neural network controller(CENNC) through the simulation and experimental results. And we showed that the finally optimized PENNC was very useful in the stabilization control of an IP system.

  • PDF

Structural Design of Differential Evolution-based Multi Output Radial Basis Funtion Polynomial Neural Networks (차분 진화알고리즘 기반 다중 출력 방사형 기저 함수 다항식 신경 회로망 구조 설계)

  • Kim, Wook-Dong;Ma, Chang-Min;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1964-1965
    • /
    • 2011
  • 본 연구에서는 패턴분류를 위해 기존의 방사형 기저 함수 신경회로망(Radial Basis Funtion Neural Network)과 다항식 신경회로망(Polynomial Neural Network)을 결합한 다중 출력 방사형 기저 함수다항식 신경회로망 (Multi Output Radial Basis Funtion Polynomial Neural Network)의 분류기를 제안한다. 제안된 모델은 PNN을 기본 구조로 하여 1층에 기존의 다항식 노드 대신 다중 출력 형태의 RBFNN을 적용 한다. RBFNN의 은닉층에는 기존의 활성함수가 아닌 fuzzy 클러스터링을 사용하여 입력 데이터의 특성을 고려한 적합도를 사용하였다. PNN은 입력변수의 수와 다항식 차수가 모델의 성능을 결정함으로 최적화가 필요하며 본 논문에서는 Differential Evolution(DE)을 사용하여 모델의 구조 및 파라미터를 최적화시켜 모델의 성능을 향상시켰다. 패턴분류기로써의 제안된 모델을 평가하기 위해 pima 데이터를 이용하였다.

  • PDF

Design of Adaptive Fuzzy Logic Controller Using Real-Coding Genetic Algorithm and Neural Network (실수형 유전알고리즘과 신경회로망을 이용한 적응 퍼지제어기의 설계)

  • Nam, Jing-Rak;Kim, Dong-Wan;Hwang, Gi-Hyun;Ahn, Ho-Kyun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07e
    • /
    • pp.115-121
    • /
    • 2000
  • 본 논문에서는 진화연산 중에서 해의 다양성과 수렴속도면에서 좋은 성능을 나타내는 실수형 유전알고리즘과 신경회로망을 이용한 적응 퍼지제어기를 설계하였다. 실수형 유전알고리즘을 이용하여 퍼지제어기의 입 출력 이득과 실시간으로 퍼지제어기의 입 출력이득을 적응적으로 변경하는 신경회로망의 가중치를 튜닝하였다. 제안한 방법의 유용성을 평가하기 위해 시지연을 갖는 제어시스템[14]에 적용하였다. 컴퓨터 시뮬레이션 결과, 제안한 적응 퍼지제어기가 기존의 퍼지제어기보다 오버슈트, 정정시간, 상승시간면에서 더 우수한 제어성능을 나타내었다.

  • PDF

Neural-Fuzzy Controller Based on Reinforcement Learning (강화 학습에 기반한 뉴럴-퍼지 제어기)

  • 박영철;김대수;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.245-248
    • /
    • 2000
  • In this paper we improve the performance of autonomous mobile robot by induction of reinforcement learning concept. Generally, the system used in this paper is divided into two part. Namely, one is neural-fuzzy and the other is dynamic recurrent neural networks. Neural-fuzzy determines the next action of robot. Also, the neural-fuzzy is determined to optimal action internal reinforcement from dynamic recurrent neural network. Dynamic recurrent neural network evaluated to determine action of neural-fuzzy by external reinforcement signal from environment, Besides, dynamic recurrent neural network weight determined to internal reinforcement signal value is evolved by genetic algorithms. The architecture of propose system is applied to the computer simulations on controlling autonomous mobile robot.

  • PDF

Implementation of Evolving Neural Network Controller for Inverted Pendulum System (도립진자 시스템을 위한 진화형 신경회로망 제어기의 실현)

  • 심영진;김태우;최우진;이준탁
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.3
    • /
    • pp.68-76
    • /
    • 2000
  • The stabilization control of Inverted Pendulum(IP) system is difficult because of its nonlinearity and structural unstability. Futhermore, a series of conventional techniques such as the pole placement and the optimal control based on the local linearizations have narrow stabilizable regions. At the same time, the fine tunings of their gain parameters are also troublesome. Thus, in this paper, an Evolving Neural Network Controller(ENNC) which its structure and its connection weights are optimized simultaneously by Real Variable Elitist Genetic Algorithm(RVEGA) was presented for stabilization of an IP system with nonlinearity. This proposed ENNC was described by a simple genetic chromosome. And the deletion of neuron, the according to the various flag types. Therefore, the connection weights, its structure and the neuron types in the given ENNC can be optimized by the proposed evolution strategy. And the proposed ENNC was implemented successfully on the ADA-2310 data acquisition board and the 80586 microprocessor in order to stabilize the IP system. Through the simulation and experimental results, we showed that the finally acquired optimal ENNC was very useful in the stabilization control of IP system.

  • PDF