• Title/Summary/Keyword: 진화된 구조 최적화 방법

Search Result 49, Processing Time 0.029 seconds

Design of Steel Structures Using the Neural Networks with Improved Learning (개선된 인공신경망의 학습방법에 의한 강구조물의 설계)

  • Choi, Byoung Han;Lim, Jung Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.6 s.79
    • /
    • pp.661-672
    • /
    • 2005
  • For the efficient stochastic optimization of steel structures for which a large number of analyses is required, artificial neural networks,which have emerged as a powerful tool that could have been used to replace time-consuming procedures in many scientific or engineering applications, are applied. They are utilized for the solution of the equilibrium equations resulting from the application of the finite element method in connection with the reanalysis type of problem, for which a large number of finite element analyses are required in this study. As such, the use of artificial neural networks to predict finite element analysis outputs simplifies and facilitates the performance of the stochastic optimal design of structural systems where a trained neural network is used to replace the structural reanalysis phase. Moreover, to improve efficiency of used artificial neural networks, genetic algorithm is utilized. The stochastic optimizer used in this study is an algorithm based on the evolution theory. The efficiency of the proposed procedure is examined in problems with both volume (weight) functions and real-world cost functions

Design and Application of Genetic-Fuzzy System based on Grammatical Encoding (문법 코딩에 기반한 유전적 퍼지 시스템의 설계 및 응용)

  • Gil, Jun-Min;Go, Myeong-Suk;Hwang, Jong-Seon
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.1
    • /
    • pp.31-45
    • /
    • 2001
  • 퍼지 시스템의 설계시, 퍼지 시스템의 성능 저하 없이 최적의 퍼지 규칙 선택과 퍼지 소속 함수의 단순한 정의는 매우 중요하다. 이러한 목적을 이루기 위해서, 본 논문에서는 입력 공간에 강한 영향을 보이는 퍼지 규칙만을 퍼지 규칙으로 선택함으로써 입력 공간의 증가에 유연하게 대처할 수 있는 퍼지 규칙 구조를 제안한다. 또한, 유전자 알고리즘의 진화 탐색을 통하여 퍼지 시스템의 최적화된 구조를 얻기 위해서 퍼지 시스템의 구조를 생성시키는 문법 규칙을 해개체로 코딩하는 문법 코딩을 이용한 유전적 퍼지 시스템을 제안한다. 문법 규칙은 퍼지 규칙의 복잡한 구조를 단순한 모듈 구조로 표현하므로 문법 규칙의 코딩은 유전자 알고리즘의 빠른 수렴과 효율적인 탐색을 보장한다. 아울러, 제안하는 방법을 많은 입력 공간을 갖는 아이리스 데이타(Iris data) 문제와 시간열 예측(time series prediction) 문제에 적용함으로써 제안하는 방법의 응용성을 보이고 성능을 분석한다. 실험 결과, 제안하는 방법이 직접 코딩을 사용한 다른 설계 방법보다 더 좋은 성능을 보여 주었다.

  • PDF

A Learning Using GA Optimized Neural Networks (유전자 알고리즘 최적화 신경망을 이용한 학습)

  • YeoChang Yoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.27-29
    • /
    • 2008
  • 시스템 분석에 주로 사용하는 자료 중에는 비선형 자료와 시계열 등이 있다. 이들 자료는 그 함축적인 관계가 매우 복잡하여 전통적인 통계분석 도구로 분석하는데 어려움이 많다. 본 연구에서는 현실 세계에서 다양하게 나타나는 복잡성을 다루기 위하여 하이브리드 진화 신경망 모델링 접근 방법으로 자료를 모형화 하고 이를 통한 학습의 적합도를 살펴본다. 비선형 자료 등을 모형화하기 위한 학습은 역전파 신경망 기법을 이용한다. 학습의 효율을 높이기 의해서 격자감소 학습 알고리즘과 함께 이용하는 유전자 알고리즘은 네트워크 구조를 최적화 시킬 수 있는 초기가중값을 이용한 전역 최소값을 찾는데 이용한다. 학습 결과를 통해 제안된 하이브리드형 접근방법의 학습이 보다 효율적임을 살펴보기 위하여 유전자 알고리즘으로 최적화된 신경망 학습 알고리즘을 비선형 모의자료의 학습에 적용하여 보았다.

Optimal Design of a Linear Structural Control System Considering Loading Uncertainties (하중의 불확실성을 고려한 선형구조제어 시스템의 최적설계)

  • Park, Won-Suk;Park, Kwan-Soon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.1-9
    • /
    • 2011
  • An optimal design method for a structural control system considering load variations due to their uncertain characteristics is studied in this paper. The conventional design problem for a control system generally deals with the optimization problem of a structural control system and interaction between the structure and the control device. This study deals with the optimization problem of a load-structure-control system and the more complicated interactions with each other. The problem of finding the load that maximizes the structural responses and the structural control system that minimizes the responses simultaneously is formulated as the min-max problem. In order to effectively obtain the optimal design variables, a co-evolutionary algorithm is adopted and, as a result, an optimal design procedure for the linear structural control system with uncertain dynamic characteristics is proposed. The example design and simulated results of an earthquake excited structure validates the proposed method.

Optimal design of fuzzy inference systems based on genetic granulation (진화 Granule 기반 퍼지추론 시스템의 최적 설계)

  • 박건준;이동윤;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.269-272
    • /
    • 2004
  • 본 논문은 비선형 시스템의 퍼지모델을 위해 정보 granules 기반 퍼지 추론 시스템의 새로운 설계 및 이의 최적화를 제시한다. 퍼지모델은 주로 경험적 방법에 의해 추출되기 때문에 보다 구체적이고 체계적인 방법에 의한 동정 및 최적화 될 필요성이 요구된다. 일반적으로, 정보 granules는 근접성, 유사성 또는 기능성 둥에 인하여 서로 결합되는 요소(특히, 수치 데이터)의 실체이다. 제안된 퍼지 모델은 정보 데이터의 특성을 살리기 위해 HCM 클러스터링 방법에 의해 전반부/후반부 구조 및 파라미터 동정을 시행한다. 두 가지 형태의 퍼지 추론 방법은 간략 추론과 선형추론에 의해 수행되며 삼각형 멤버쉽 함수를 사용한다. 구축된 정보 granule 기반 퍼지 모델은 유전자 알고리즘을 이용하여 전반부 파라미터를 최적으로 동정한다. 제안된 비선형 모델의 성능평가는 수치적인 예를 통해 비교 평가한다.

  • PDF

Structural Dynamics Modification Using Surface Grooving Technique (임의의 형태를 갖는 흠을 이용한 표면형상변형을 통한 동특성 변경)

  • 박미유;박영진;박윤식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.859-863
    • /
    • 2004
  • Structural Dynamics Modification is very effective technique to improve structure's dynamic characteristics by adding or removing auxiliary structures, changing material property, changing shape of structure. In this research, using the surface grooving technique, shape of base structure was changed to improve its first natural frequency. Utilizing the result of sensitivity analysis, groove shape was formed gathering the many small embossing elements. For this process, Sensitivity Criterion Factor was introduced. To reduce its amount of calculation, the range of target area was restricted to their neighboring area and that result was very successful.

  • PDF

Fuzzy Controller Design of 2 D.O.F of Wheeled Mobile Robot using Niche Meta Genetic Algorithm (Niche Meta 유전 알고리즘을 이용한 2자유도 이동 로봇의 퍼지 제어기 설계)

  • 최승원;박종국
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.35-38
    • /
    • 2000
  • 본 논문에서는 퍼지 제어기의 설계를 위한 다중 돌연변이 연산자를 갖는 Niche Meta 유전 알고리즘을 제안한다. 제안된 알고리즘에서 유전자는 유전 알고리즘에 사용되는 교배율이나 돌연변이율과 같은 구조 매개변수와 퍼지 제어기의 입, 출력 소속함수를 나타내는 매개변수로 구성된다. 제안된 알고리즘은 부개체군들에 대해 퍼지 제어기의 소속함수의 매개변수를 최적화시키는 지역적 탐색을 수행하면서 전체 개체군에 대해서 최적의 구조 매개변수에 대한 전역적인 탐색을 수행한다. 다중 돌연변이 연산자는 지역적 진화의 결과에 따라 진화에 가장 적합한 돌연변이 방법으로 선택된다. 제안된 알고리즘의 효율성을 입증하기 위해 2 자유도를 구륜이동 로봇에 대한 모의 실험을 수행한다.

  • PDF

Reliability-Based Shape Optimization Under the Displacement Constraints (변위 제한 조건하에서의 신뢰성 기반 형상 최적화)

  • Oh, Young-Kyu;Park, Jae-Yong;Im, Min-Gyu;Park, Jae-Yong;Han, Seog-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.589-595
    • /
    • 2010
  • This paper presents a reliability-based shape optimization (RBSO) using the evolutionary structural optimization (ESO). An actual design involves uncertain conditions such as material property, operational load, poisson's ratio and dimensional variation. The deterministic optimization (DO) is obtained without considering of uncertainties related to the uncertainty parameters. However, the RBSO can consider the uncertainty variables because it has the probabilistic constraints. In order to determine whether the probabilistic constraint is satisfied or not, simulation techniques and approximation methods are developed. In this paper, the reliability-based shape design optimization method is proposed by utilization the reliability index approach (RIA), performance measure approach (PMA), single-loop single-vector (SLSV), adaptive-loop (ADL) are adopted to evaluate the probabilistic constraint. In order to apply the ESO method to the RBSO, a sensitivity number is defined as the change of strain energy in the displacement constraint. Numerical examples are presented to compare the DO with the RBSO. The results of design example show that the RBSO model is more reliable than deterministic optimization.

Design of surface plasmon resonance sensors using evolution algorithm (진화알고리즘을 이용한 표면플라즈몬 공명센서의 설계)

  • Jung, Jae-Hoon;Kim, Min-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1615-1616
    • /
    • 2006
  • 본 논문에서는 표면 플라즈몬 공명(Surface Plasmon Resonance) 센서의 여러 파라미터를 동시에 만족시키는 설계기법을 제시하였다. 설계 파라미터는 반사광 dip의 3dB bandwidth와 dip의 깊이이고 목적함수는 해석치와 목표치의 차이 벡터의 norm으로 정의하였다. 설계 변수는 박막된 각 금속 충의 두께로 하였고 SPR 센서의 스펙트럼을 해석하기 위해 광학 어드미턴스 기법을 이용하였다. 최적화 기법은 (1+1) 진화 알고리즘을 사용하였다. 설계방법을 3층 구조의 SPR 센서에 적용하여 최적 설계한 파라미터는 초기값에 비해 3dB bandwidth는 4.8nm, dip의 깊이는 1.1dB 향상되었다.

  • PDF

Evolutionally optimized Fuzzy Polynomial Neural Networks Based on Fuzzy Relation and Genetic Algorithms: Analysis and Design (퍼지관계와 유전자 알고리즘에 기반한 진화론적 최적 퍼지다항식 뉴럴네트워크: 해석과 설계)

  • Park, Byoung-Jun;Lee, Dong-Yoon;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.236-244
    • /
    • 2005
  • In this study, we introduce a new topology of Fuzzy Polynomial Neural Networks(FPNN) that is based on fuzzy relation and evolutionally optimized Multi-Layer Perceptron, discuss a comprehensive design methodology and carry out a series of numeric experiments. The construction of the evolutionally optimized FPNN(EFPNN) exploits fundamental technologies of Computational Intelligence. The architecture of the resulting EFPNN results from a synergistic usage of the genetic optimization-driven hybrid system generated by combining rule-based Fuzzy Neural Networks(FNN) with polynomial neural networks(PNN). FNN contributes to the formation of the premise part of the overall rule-based structure of the EFPNN. The consequence part of the EFPNN is designed using PNN. As the consequence part of the EFPNN, the development of the genetically optimized PNN(gPNN) dwells on two general optimization mechanism: the structural optimization is realized via GAs whereas in case of the parametric optimization we proceed with a standard least square method-based learning. To evaluate the performance of the EFPNN, the models are experimented with the use of several representative numerical examples. A comparative analysis shows that the proposed EFPNN are models with higher accuracy as well as more superb predictive capability than other intelligent models presented previously.