• 제목/요약/키워드: 진행예측

검색결과 3,530건 처리시간 0.026초

인공지능 기반 전력량예측 기법의 비교 (Comparison of Power Consumption Prediction Scheme Based on Artificial Intelligence)

  • 이동구;선영규;김수현;심이삭;황유민;김진영
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권4호
    • /
    • pp.161-167
    • /
    • 2019
  • 최근 안정적인 전력수급과 급증하는 전력수요를 예측하는 수요예측 기술에 대한 관심과 실시간 전력측정을 가능하게 하는 스마트 미터기의 보급의 증대로 인해 수요예측 기법에 대한 연구가 활발히 진행되고 있다. 본 연구에서는 실제 측정된 가정의 전력 사용량 데이터를 학습하여 예측결과를 출력하는 딥 러닝 예측모델 실험을 진행한다. 그리고 본 연구에서는 데이터 전처리 기법으로써 이동평균법을 도입하였다. 실제로 측정된 데이터를 학습한 모델의 예측량과 실제 전력 측정량을 비교한다. 이 예측량을 통해서 전력공급 예비율을 낮춰 사용되지 않고 낭비되는 예비전력을 줄일 수 있는 가능성을 제시한다. 또한 본 논문에서는 같은 데이터, 같은 실험 파라미터를 토대로 세 종류의 기법: 다층퍼셉트론(Multi Layer Perceptron, MLP), 순환신경망(Recurrent Neural Network, RNN), Long Short Term Memory(LSTM)에 대해 실험을 진행하여 성능을 평가한다. 성능평가는 MSE(Mean Squared Error), MAE(Mean Absolute Error)의 기준으로 성능평가를 진행했다.

웹 기반 학습을 위한 학습 시간 예측 모델 (Learning Time Prediction Model for Web-based Instruction)

  • 김창화;장기영
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권10호
    • /
    • pp.983-991
    • /
    • 2003
  • 인터넷 상의 웹기반교육은 시$.$공간을 초월하여 많은 학습자들에게 관련 정보와 지식을 제공하고 있다. 그러나 웹 기반교육에서는 학습자의 학습진행상태를 단지 시험을 통해서만 확인 할 수 있는 문제가 있다. 본 논문은 웹기반교육에서 학습자의 학습 과정에 문제가 있는지를 검사하고, 문제가 있는 학생들을 발견할 수 있는 웹 모니터링 기법을 소개한다. 그 기법에서 본 논문은 이전 학을 단위들에 대한 학습자의 학습시간과 형성평가점수들에 기초하여 다음에 진행할 학습 단위에 대한 학습 시간을 예측할 수 있는 학습 시간 예측 모델을 제안한다. 이 기법은 교수자에게 학습자의 학습진행상태를 제공한다. 이 방법은 만약 학습자가 예측학습시간을 초과하였을 경우에는 자동으로 경고 메시지를 보내어 학습자가 다시 학습 과정에 잘 임하도록 독려하는데 이용될 수 있다. 학습시간 예측모델을 이용한 웹 모니터링에 관한 사례 연구를 통해 측정한 결과, 학습진행상태가 원만하지 않는 학습자의 대부분은 형성평가 점수가 저조하였다. 또한, 그들은 학습진행상태가 원만하지 않는 자신의 학습 습관을 그대로 유지하고 있는 것으로 나타났다.

공장전력 사용량 데이터 기반 LSTM을 이용한 공장전력 사용량 예측모델 (Factory power usage prediciton model using LSTM based on factory power usage data)

  • 고병길;성종훈;조영식
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 추계학술발표대회
    • /
    • pp.817-819
    • /
    • 2019
  • 다양한 학습 모델이 발전하고 있는 지금, 학습을 통한 다양한 시도가 진행되고 있다. 이중 에너지 분야에서 많은 연구가 진행 중에 있으며, 대표적으로 BEMS(Building energy Management System)를 볼 수 있다. BEMS의 경우 건물을 기준으로 건물에서 생성되는 다양한 DATA를 이용하여, 에너지 예측 및 제어하는 다양한 기술이 발전해가고 있다. 하지만 FEMS(Factory Energy Management System)에 관련된 연구는 많이 발전하지 못했으며, 이는 BEMS와 FEAMS의 차이에서 비롯된다. 본 연구에서는 실제 공장에서 수집한 DATA를 기반으로 하여, 전력량 예측을 하였으며 예측을 위한 기술로 시계열 DATA 분석 방법인 LSTM 알고리즘을 이용하여 진행하였다.

LSTM 모델의 하이퍼 파라미터가 암호화폐 가격 예측에 미치는 영향 분석 (Understanding the effect of LSTM hyperparameters tuning on Cryptocurrency Price Prediction)

  • 박재현;이동건;서영석
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 춘계학술발표대회
    • /
    • pp.466-469
    • /
    • 2021
  • 최근 암호화폐가 발전함에 따라 다양한 연구들이 진행되고 있지만 그 중에서도 암호화폐의 가격 예측 연구들이 활발히 진행되고 있다. 특히 이러한 예측 분야에서도 인공지능 기술을 접목시켜 암호화폐 가격의 예측 정확도를 높이려는 노력들이 지속되고 있다. 인공지능 기반의 기법들 중 시간적 정보를 가진 데이터를 기반으로 하고 있는 LSTM(Long Short-Term Memory) 모델이 다각도로 활용되고 있으나 급등락하는 암호화폐 가격 데이터가 많을 경우에는 그 성능이 상대적으로 낮아질 수 밖에 없다. 따라서 본 논문에서는 가격이 급등락하고 있는 Bitcoin, Ethereum, Dash 암호화폐 데이터 환경에서 LSTM 모델의 예측 성능이 향상될 수 있는 세부 하이퍼 파라미터 값을 실험 및 분석하고, 그 결과의 의미에 대해 고찰한다. 이를 위해 LSTM 모델에서 향상된 예측률을 보일 수 있는 epoch, hidden layer 수, optimizer 에 대해 분석하였고, 최적의 예측 결과를 도출해 줄 수 있는 최소 training data 개수도 함께 살펴보았다.

劣化 構造物의 壽命豫測과 그 對策 (A Counterplan and Life Prediction of Degradaded Structures)

  • 권재도;진영준
    • Journal of Welding and Joining
    • /
    • 제13권2호
    • /
    • pp.32-41
    • /
    • 1995
  • 본 고에서는 경년열화의 종류, 열화의 판정방법 등에 관한 일반사항과 열화 및 수명예측 문 제를 해결하기 위한 문제점등을 기술하였고, 그 동안 연구되어진 열화 현상에 의한 재료강도의 저하현상을 설명하였다. 또한 열화현상은 비파괴 판정만으로 수명예측이 어려우므로 시간에 따라 진행하는 열화의 진행곡선이 반드시 필요할 것이다. 이와 같이 열화진행 정도를 추정하기 위해 열화재의 가속제작 방법과 레이저 빔의 고온의 열원을 이용한 열화 치료 가능성을 제시 하였다. 아울러 열화치료에 대해 정도높은 방법에 제시된다면 기존 기계구조물을 안전하고, 지속적으로 사용하여 경제적인 손실을 줄일 수 있을 것으로 기대한다.

  • PDF

VVC 화면내 예측 및 부호화 주요 기술

  • 한희지;최재륜;권대혁;최해철
    • 방송과미디어
    • /
    • 제24권4호
    • /
    • pp.39-54
    • /
    • 2019
  • VVC(Versatile Video Coding)는 국제 표준화 단체인 JVET(Joint Video Exports Team)에서 표준화가 진행되고 있는 새로운 국제 비디오 부호화 표준이다. 이 표준화에서는 기존 최신 비디오 부호화 표준인 HEVC(High Efficiency Video Coding)/H.265 대비 2배 이상의 부호화 성능을 목표로 다양한 부호화 방법들이 논의되고 있다. 본 고에서는 VVC의 새로운 부호화 모드 중 화면내 예측(intra prediction) 부호화 방법에 대해 소개한다. 화면내 예측은 현재 부호화를 진행하려는 블록의 주변에 이미 재구성된 샘플들을 참조하여 현재 블록을 예측하는 방법이다. 이 화면내 부호화 방법은 화면간 예측(inter prediction) 부호화 방법과 함께 부호화 효율 향상에 기여할 뿐만 아니라, 임의 접근(random access)을 가능하게 하고 부호화된 비트스트림의 에러 내성을 높인다. VVC는 화면내 부호화 예측 모드 종류를 최대 87개까지 확장하고 다양한 화면내 부호화 방법을 채택함으로써 기존 비디오 부호화 표준에 비해 높은 부호화 효율을 갖는다. 본 고에서는 VVC에 채택된 주요 화면내 부호화 방법들을 소개한다.

전자상거래 시장 분석을 통한 국내 온라인 유통 경쟁 양상의 변화 예측

  • 유병준
    • 한국벤처창업학회:학술대회논문집
    • /
    • 한국벤처창업학회 2019년도 추계학술대회
    • /
    • pp.135-141
    • /
    • 2019
  • 최근 대표적 글로벌 유통기업인 미국의 아마존과 중국의 알리바바가 전 세계적으로 가장 큰 시장점유가 있으며 두 기업의 국내진입 시 국내 유통산업에 큰 영향을 미칠 것으로 예상한다. 두 기업은 온라인 기업이 오프라인 기업을 흡수 합병함으로써 새로운 가치를 창출해내는 O2O (Online to Offline) 추세가 국제적으로 진행되고 있다. 아마존과 알리바바와 같은 글로벌 유통업체들은 일본, 인도와 같은 타 국가로의 세계 진출을 적극적으로 하는 추세이다. 본 연구에서는 아마존, 알리바바와 같은 글로벌 유통업체가 세계 진출의 일환으로 국내 유통시장 진입 시, 노출된 글로벌 경쟁 속에서 국내 유통기업들의 사업전망을 예측해보고, 해당 예측에 기반하여 기업 차원의 전략적 대응방안 및 정부 차원의 정책 지원방안을 마련하는 데 그 목적이 있다. 시장 현황분석을 기반으로 하여, 미래 시장예측 방법으로써 무작위로 추출된 난수(Random Number)를 이용하여 원하는 방정식의 값을 확률적으로 구하기 위한 알고리즘(Algorithm) 및 시뮬레이션(Simulation)의 방법인 몬테카를로(Monte Carlo, MC) 방법론을 사용하여 국내 유통시장의 변화를 예측하여 본 연구를 진행하였다.

  • PDF

다중이용시설 이용자수 감지계수 및 분석예측 기술 개발 (Indoor Pedestrian Detection-Counting and Analysis-Prediction Techniques for Multi-Complex Building)

  • 장봉석
    • 통합자연과학논문집
    • /
    • 제15권2호
    • /
    • pp.73-81
    • /
    • 2022
  • 본 연구는 다중이용시설 이용자들의 쾌적함과 안전 그리고 시설내부 에너지 사용량의 최적 절감을 위하여 이용자수를 분석예측한 정보에 따른 공기질품질제어시스템 운영을 통해 국민 중심의 안전하고 쾌적한 서비스를 제공할 필요로 수행되었다. 이를 위하여 실내유동인구수를 카운팅하는 로컬시스템을 제작하고 수집된 유동인구 카운팅 정보를 시계열 모델링을 기반으로 분석예측하는 연구를 진행하였다. 개발된 시스템 성능평가 결과 유동인구 카운팅시스템은 95% 이상 정확도를 보여주었고, 예측시스템은 83~95% 정확도를 확보하였다. 본 연구결과 개발된 시스템은 다중이용시설에 즉시 적용가능하며 향후 남녀노소 인식을 진행하고 이를 예측한 정보에 의한 보다 다양한 서비스 개발을 추진할 계획이다.

시계열 예측을 고려한 속성 선택 딥러닝 모델 (Feature Selection Deep Learning Model considering Time Series Prediction)

  • 박광호;;류근호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 춘계학술발표대회
    • /
    • pp.509-512
    • /
    • 2021
  • 최근 다양한 시계열 데이터의 분석이 딥러닝 방법을 통하여 수행되고 있다. 주로 RNN과 LSTM을 이용하여 많은 시계열 예측이 이루어지고 있다. 하지만 이러한 예측모델을 생성하는데 가장 중요한 것은 어떠한 변수를 얼마나 사용하는지가 중요하다. 이에 대하여, 본 연구에서는 3개의 신경망을 적용하여, 속성을 선택하는 Selection MLP, 속성에 가중치를 부여하는 Extraction MLP 그리고 예측을 진행하는 Prediction MLP로 이루어진 MLP-SEL 구조를 제안한다. 비교를 위하여 다른 순환 신경망에 대하여 시계열 데이터에 대한 예측을 진행하였으며, 그 결과 우리가 제안한 MLP-SEL 모델의 시계열 예측이 좋은 성능을 보였다.

오토인코더에 기반한 딥러닝을 이용한 사이버대학교 학생의 학업 성취도 예측 분석 시스템 연구 (Study for Prediction System of Learning Achievements of Cyber University Students using Deep Learning based on Autoencoder)

  • 이현진
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권6호
    • /
    • pp.1115-1121
    • /
    • 2018
  • 본 논문에서는 사이버대학교 학습관리시스템에 누적된 데이터를 기반으로 학습 성과를 예측하기 위하여 딥러닝에 기반한 데이터 분석 방법을 연구하였다. 학습자의 학업 성취도를 예측하면, 학습자의 학습을 촉진하여 교육의 질을 높일 수 있는 도구로 활용될 수 있다. 학습 성과의 예측의 정확도를 향상시키기 위하여 오토인코더에 기반하여 한학기 출결 상황을 예측하고, 학기 진행 중인 평가 요소들과 결합하여 딥러닝으로 학습하여 최종 예측의 정확도를 높였다. 제안하는 예측 방법을 검증하기 위하여 학습 진행 과정의 출결데이터의 예측과 평가요소 데이터를 활용하여 최종학습 성취도를 예측하였다. 실험을 통하여 학기 진행중에 학습자의 성취도를 예측할 수 있는 것을 보였다.