• Title/Summary/Keyword: 진동 효과

Search Result 1,707, Processing Time 0.026 seconds

Vibration Analysis of Mindlin-Plate Structures having Attachments by the Receptance Method (Receptance 방법에 의한 부가물을 갖는 Mindlin판유추 구조제의 진동해석)

  • S.Y. Han;J.H. Chung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.3
    • /
    • pp.98-106
    • /
    • 1995
  • In ship and offshore structures, there exist many local structural systems which may be regarded as a combined structural systems composed of thick plates or double wall panels and attachments reducible to damped spring-mass systems. For vibration analysis of such a combined system an analytical method based on the receptance method is presented in this paper. The free vibrational characteristics and forced vibration responses of the combined system can be calculated by synthesis of receptances of the panel and attachments. To calculate receptances of the panel, it may be regarded as a Mindlin plate for consideration of effects of shear deformation and rotary inertia and the assumed mode-Lagrange's equation method is applied using Timoshenko beam function or polynomials having properties of Timoshenko beam function as trial functions. Through some numerical calculations, accuracy and efficiency of the presented method are shown.

  • PDF

Design of Implantable Middle Ear Hearing Aids Using an Electromagnetic Transducer (전자 트랜스듀서 방식에 의한 청각보조용 이식형 인공중이 시스템 설계)

  • Cho, Jin-Ho;Song, Byung-Seop;Kim, Myoung-Nam;Won, Chul-Ho;Park, Se-Kwang;Lee, Sang-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.466-475
    • /
    • 1997
  • In this paper, an implantable middle ear hearing aids using an electromagnetic transducer which consists of a tiny coil and a magnet is designed, and objective design method to implement a vibrator of the electromagnetic type transducer is proposed. Sound characteristic of the electromagnetic type vibrator is excellent but power transfer rate is lower than that of a ceramic type. To improve power transfer efficiency of system, external and inner part of a middle ear system is designed using FM transmission method. We implemented an experimental set of the designed transducer, inner part, and outer part. Then, we measured vibration characteristics of a metal strip and a temporal bone of a dead body. As the results, we confirmed the advantage of FM method and showed that designed transducer could effectively transmit vibration of amplified input sound pressure to ossicle.

  • PDF

Effect of Massage Intervention for Pain Alleviation after Intramuscular Injection: Application of Massage Device using Vibration and Pressure (근육 주사 후 통증 경감을 위한 마사지 중재의 효과 : 진동과 압력을 이용한 마사 지기 적용)

  • Park, Jum-Hyun;Kim, Jung-A
    • Journal of Digital Contents Society
    • /
    • v.18 no.4
    • /
    • pp.699-706
    • /
    • 2017
  • This study aims to investigate the effects of a massage device with vibration and pressure functions and a manual massage on the degree and duration of pain among patients after intramuscular injection. This study used a quasi-experimental design with nonequivalent control group. The experimental group had lower pain scores (t= 7.40, p =.001) and shorter durations of pain (t= 5.25, p=.001) than the control group. The results showed that after intramuscular injection, a massage device with vibration and pressure functions effective to reduce the degree and duration of pain than a manual massage. Therefore, the application of a massage device with vibration and pressure functions after intramuscular injection will contribute to the promotion of patient safety and the reduction of nurse workload.

Forced Vibration Modeling of Rail Considering Shear Deformation and Moving Magnetic Load (전단변형과 시간변화 이동자기력을 고려한 레일의 강제진동모델링)

  • Kim, Jun Soo;Kim, Seong Jong;Lee, Hyuk;Ha, Sung Kyu;Lee, Young-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1547-1557
    • /
    • 2013
  • A forced vibration model of a rail system was established using the Timoshenko beam theory to determine the dynamic response of a rail under time-varying load considering the damping effect and stiffness of the elastic foundation. By using a Fourier series and a numerical method, the critical velocity and dynamic response of the rail were obtained. The forced vibration model was verified by using FEM and Euler beam theory. The permanent deformation of the rail was predicted based on the forced vibration model. The permanent deformation and wear were observed through the experiment. Parametric studies were then conducted to investigate the effect of five design factors, i.e., rail cross-section shape, rail material density, rail material stiffness, containment stiffness, and damping coefficient between rail and containment, on four performance indices of the rail, i.e., critical velocity, maximum deflection, maximum longitudinal stress, and maximum shear stress.

Free Vibration Analysis of Non-symmetric Thin-Walled Curved Beams with Shear Deformation (전단변형을 고려한 비대칭 박벽 곡선보의 자유진동해석)

  • Kim, Nam-Il;Kim, Moon-Young;Cheol, Min-Byoung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.1-13
    • /
    • 2003
  • For spatial free vibration of non-symmetric thin-walled curved beams with shear deformation, an improved formulation is proposed in the present study. The elastic strain and the kinetic energies are first derived by considering constant curvature and shear deformation effects due to shear forces and restrained warping torsion. Next equilibrium equations and force-deformation relations are obtained using a stationary condition of total potential energy. And the finite element procedures are developed by using isoparametric curved beam element with arbitray thin-walled sections. Particularly not only shear deformation and thickness-curvature effects on vibration behaviors of curved beams but also mode transition and crossover phenomena with change in curvatures of beams are parametrically investigated. In order to illustrate the accuracy and the reliability of this study, various numerical solutions for spatial free vibration are compared with results by available references and ABAQUS's shell element.

A Study on the Noise and Vibration Damping Performance of RC Hollow Core Slab (중공형 RC 슬래브의 소음 및 진동 감쇠성능에 대한 연구)

  • Kim, Dong Baek;Kim, In Bae;Kim, Jong Hoon;Lee, Jae Won
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.2
    • /
    • pp.292-300
    • /
    • 2019
  • Purpose: To reduce the noise and vibration of reinforced concrete slab structures, the damping performance is to be performed experimentally after installing hollow core or filling it with liquid. Method: Using the hollow rate as an experimental variable, the damping ratio and stiffness of each test specimen at impact load are obtained to determine the difference between the damping ratio and stiffness of the numerical analysis. In addition, the damping effects are reviewed by comparing the difference in the damping ratio and stiffness of a test specimen filled with liquid 50% of the study. Results: Since the difference in resistance between a specimen with or without hollow core is 5%, it is judged that there is no structural problem, and the injection of liquid into the hollow core can increase the damping ratio, which can reduce noise or vibration. Conclusion: At less than 20% of hollow rate, there was little damping effect, and at 30%, damping effect was found. However, if liquid is injected into the hollow core of the specimen, damping rate is shown to increase, and the injection of liquid into the hollow part is believed to reduce noise or vibration.

Dynamic Damping Characteristics of Grouthed Coal Ash (약액처리된 석탄회의 동적 감쇠특성)

  • Chun, Byung Sik;Chung, Hyoung Sik;Koh, Yong Il;Lee, Hyoung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.145-151
    • /
    • 1991
  • The final purpose of this study is to examine the uses of coal ash, by-product from thermal power plant as a type of filling-embankment materials and the reuses of ash ponds. In this time, to investigate the dynamic properties, we made the test piece specimen with coal ashes, and obtained the damping ratio. In place(ash pond), the damping property by underground wall was investigated before and after soil improvements. The damping ratio of coal ash test piece specimen of 12% cement is the highest and that of 9% cement or chemical grout, that of 6% cement is in order. In same coal ash test piece, the damping ratio increases with decreasing the void ratio. In conclusion, it could be said that the damping ratio increases with the stiffness of materials. In the ash pond, the damping effect is the most when trench is set through the vibration wave propagation course, and when soil is improved the higher stiffness of the improved soil is, the more damping effect appeared. It is justified to obtain not only the dropping of permeability and the strength increase, but also the damping effect fairly by soil improvements.

  • PDF

Nonlocal elasticity theory for bending and free vibration analysis of nano plates (비국소 탄성 이론을 이용한 나노 판의 휨 및 자유진동해석)

  • Lee, Won-Hong;Han, Sung-Cheon;Park, Weon-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.7
    • /
    • pp.3207-3215
    • /
    • 2012
  • In this paper, we study the bending and free vibration analysis of nano plate, using a nonlocal elasticity theory of Eringen with a third-order shear deformation theory. This theory has ability to capture the both small scale effects and quadratic variation of shear strain and consequently shear stress through the plate thickness. Analytical solutions of bending and vibration of a laminated composite nano plate are presented using this theory to illustrate the effect of nonlocal theory on deflection of the nano plates. The relations between nonlocal third-order and local theories are discussed by numerical results. Further, effects of (i) nonlocal parameters, (ii) laminate schemes, (iii) directions of the fiber angle and (iv) number of layers on nondimensional deflections are investigated. In order to validate the present solutions, the reference solutions are used and discussed. The results of anisotropic nano plates using the nonlocal theory may be the benchmark test for the bending analysis.

A Study on the Sloshing of Cargo Tanks Including Hydroelastic Effects (유탄성을 고려한 탱크내 슬로싱에 대한 연구)

  • Dong-Yeon Lee;Hang-Shoon Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.4
    • /
    • pp.27-37
    • /
    • 1998
  • The sloshing is very important in a safe transport of the liquid cargo by a ship. With the increasing number of supertanker and LNG carriers, this problem has become increasingly more important. In order to study the magnitude and characteristics of impact pressures due to sloshing, experiments ware performed with a rectangular tank and compared with numerical results. Structural responses of tank wall under impulsive pressures were measured. Structural vibrations induced by the sloshing load were analysed by including hydroelastic erects in terms of added mass and damping. To check the validity of the numerical model, the natural frequencies of plate in air and water were compared with measurements, and a good agreement was found. In the case that a plate vibrates under impulsive loads, the pressure on the flexible plate is larger than that on the rigid plate without hydroelastic effects, which was confirmed experimentally. The frequency of oscillatory pressure as well as accel%pion coincides with the natural frequency of plate in water.

  • PDF