• Title/Summary/Keyword: 진동 파라미터

Search Result 234, Processing Time 0.03 seconds

Optimum Design of Dynamic Vibration Absorber for Reducing Bending Vibrations of Two-Piece Vehicle Drive Line (2축 분할식 차량 구동라인의 굽힘진동 저감을 위한 동흡진기 최적설계)

  • Lee, Sang-Beom;Yoo, Young-Sun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.2
    • /
    • pp.118-124
    • /
    • 2010
  • In this paper, design parameters of dynamic vibration absorber, which is used to reduce bending vibrations of a vehicle drive line, is optimized. For obtaining the correct dynamic response characteristics, a flexible-body drive line is made by applying the flexibility data extracted from vibration analysis of propeller shafts to the drive line dynamic model. Inner tube mass, rubber stiffness and rubber damping coefficient of the dynamic vibration absorber are taken as design parameters for optimization. To minimize the vertical acceleration of the drive line, a second-order regression equation of the objective function is generated by performing the central composite experimental design with 3 factors, 2 levels and 15 test runs. And the design parameters of the dynamic vibration absorber are determined by using optimization program. The vehicle model with optimized dynamic vibration absorber reduces the vertical acceleration peak of the drive line by 17.1 % in compared with the initial model.

A study on characteristics according to the parameter variation for hybrid shaft design (하이브리드 샤프트 설계 파라미터 변화에 따른 특성 연구)

  • Hong, Dong-Pyo;Kim, Hyun-Sik;Hong, Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.99-104
    • /
    • 2008
  • The Carbon fiber epoxy composite material and aluminum have many advantages about higher specific stiffness and good fatigue characteristics. basically, the propeller shaft of automobile must satisfy high natural frequency more than 9,200 rpm to satisfy high number of rotation and high torsion torque more than 2,700Nm. In these reason, studied natural frequency and torsion torque characteristics of shaft according to parameter variations with the outdiameter and thickness. From the torsion tester and natural frequency experiments FE analyses was compared vibration and torque characteristics of hybrid shaft Designed hybrid shaft was experimented through FFT analyzer and torsion tester each and satisfied that hybrid shaft reverence 60mm and thickness 5mm by a these experiment is most suitable. Therefore, that can manufacture existent steel two piece type propeller shaft to one piece type hybrid shaft.

  • PDF

A Study on Characteristics According to the Parameter Variation for Hybrid Shaft Design (하이브리드 샤프트 설계 파라미터 변화에 따른 특성 연구)

  • Hong, Yong;Kim, Hyun-Sik;Hong, Dong-Pyo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.3
    • /
    • pp.274-281
    • /
    • 2009
  • The carbon fiber epoxy composite material and aluminum have many advantages over other materials because of their high specific stiffness and good fatigue characteristics. Basically, the propeller shaft of automobile requires bending frequency of higher than 2,700 Nm and high natural frequency of higher than 9,200 rpm occurred by fast revolution. For this reason, natural frequency and torsion torque characteristics of hybrid shaft was studied in variation of its outer-diameter and thickness. Vibration and torque characteristics of hybrid shaft were compared by torsion tester, natural frequency experiments and FE analysis. Designed hybrid shaft satisfied its vibration and torque characteristics when its outer-diameter was 60 mm and thickness was 5 mm. Therefore, hybrid material enables to manufacture one piece structure hybrid propeller shaft rather than current two piece structure.

A Study on the Measurement of Vibration Frequency using Laser Doppler Effect (레이져 도플러 현상을 이용한 진동주파수 측정에 관한 연구)

  • 이재철;신철재;박한규
    • The Journal of the Acoustical Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.70-75
    • /
    • 1982
  • 본 논문에서는 이차원스펙트럼 분석기를 구성하여 진동 파라미터들을 추정하고 기존 방법인 Power Spectrum 방법과 비교 검토하여 이차원스펙트럼이 gaussian noise를 제거하기 때문에 유효함을 알 수 있었다.

  • PDF

A Molecular Dynamics Simulation Study of Trioctahedral Clay Minerals (삼팔면체 점토광물에 대한 분자동역학 시뮬레이션 연구)

  • Lee, Jiyeon;Lee, Jin-Yong;Kwon, Kideok D.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.4
    • /
    • pp.161-172
    • /
    • 2017
  • Clay minerals play a major role in the geochemical cycles of metals in the Critical Zone, the Earth surface-layer ranging from the groundwater bottom to the tree tops. Atomistic scale research of the very fine particles can help understand the fundamental mechanisms of the important geochemical processes and possibly apply to development of hybrid nanomaterials. Molecular dynamics (MD) simulations can provide atomistic level insights into the crystal structures of clay minerals and the chemical reactivity. Classical MD simulations use a force field which is a parameter set of interatomic pair potentials. The ClayFF force field has been widely used in the MD simulations of dioctahedral clay minerals as the force field was developed mainly based on dioctahedral phyllosilicates. The ClayFF is often used also for trioctahedral mineral simulations, but disagreement exits in selection of the interatomic potential parameters, particularly for Mg atom-types of the octahedral sheet. In this study, MD simulations were performed for trioctahedral clay minerals such as brucite, lizardite, and talc, to test how the two different Mg atom types (i.e., 'mgo' or 'mgh') affect the simulation results. The structural parameters such as lattice parameters and interatomic distances were relatively insensitive to the choice of the parameter, but the vibrational power spectra of hydroxyls were more sensitive to the choice of the parameter particularly for lizardite.

A Study on Tape Transport Characteristics of Belt Driven System (벨트구동계의 동특성 해석을 통한 주행특성 분석)

  • 유진형;김남응;주관정
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.205-209
    • /
    • 1994
  • 본 연구에서는 오디오용 데크의 음질특성과 벨트구동계의 회전진동 특성과의 연관성을 규명하고자 한다. 이를 위해 벨트구동계를 다자유도 진동계로 모델링하여 회전진동 특성을 규명하고 실험으로 확인하였다. 이의 결과를 실제 데크에 응용하기 위해 각 파라미터의 변화에 따른 특성변화의 경향을 살펴보았으며, 당사에서 개발중인 신모델에서 회전비의 적절한 설계를 제안하여 우수한 음질특성을 확인하였다.

  • PDF

Design of robust damping controller using flywheel energy storage system (플라이휠 에너지 저장장치를 이용한 강인한 댐핑 제어기 설계)

  • Lee, Jeong-Phil;Han, Snag-Chul;Han, Young-Hee;Hur, Dong-Ryol
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.226-227
    • /
    • 2011
  • 본 논문에서는 전력 시스템의 저주파 진동을 효율적으로 억제하기 위하여 기존의 PSS 를 이용하는 방법 대신 FESS를 적용하는 방법을 제시하였다. FESS PID 제어기의 최적 파라미터를 선정하기 위하여 GA를 이용한 방법을 제시하였다. 최적화 파라미터 선정시 사용되는 평가함수를 2가지로 선정하여 선정된 파라미터를 이용하여 FESS PID 제어성능을 평가하였다. 다양한 동작 조건하에 몇 가지 외란이 발생한 경우 비선형 시뮬레이션을 통하여 기존의 PSS를 이용한 방법과 동특성을 비교 고찰하였다.

  • PDF

Vibratory Loads Reduction of a Rotor in Slow Descent using Higher Harmonic Control Technology (고조파제어(HHC) 기법을 이용한 저속 하강 비행중인 로터의 진동하중 억제에 관한 연구)

  • You, Younghyun;Jung, Sung Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.6
    • /
    • pp.440-447
    • /
    • 2013
  • In this paper, a higher harmonic control (HHC) methodology is applied to find the optimum input scenario for the vibratory hub loads reduction. A comprehensive aeroelastic analysis code, CAMRAD II, is used to model the HART (Higher-harmonic-control Aeroacoustic Rotor Test) II rotor, and parametric study is conducted for the best HHC inputs leading to a minimum vibration (MV) condition. The resulting outcomes are compared with the earlier HART II test results. It is indicated that the control input adopted in the MV condition showed less satisfactory results. The new MV condition obtained in the present investigation can achieve 45% lower vibration level than the baseline uncontrolled condition. The optimum HHC input results lead to 3/rev harmonic input having $0.8^{\circ}$ amplitude and $350^{\circ}$ phase angle. About 5% reduction in the required power is possible but accompanies with the increase of vibration level.