• Title/Summary/Keyword: 진동 규명

Search Result 575, Processing Time 0.03 seconds

An Experimental Study on the Ultimate Strength and Deformation Capacity of Composite Beams with Eccentric Web Openings (편심유공합성보의 종국내력 및 변형능력에 관한 실험적 연구)

  • Choi, San Ho;Seo, Seong Yeon
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.5 s.48
    • /
    • pp.595-604
    • /
    • 2000
  • Web openings of large beams provide space for wiring, piping, and duct work to provide for proper drainage, pipes and duct must be slightly sloped with the attendant result that all web openings can not be centered on the centroidal axes of the beams. Test specimens are made for opening-depth to beam-depth ratio of 0.5 and for eccentricities of the opening center line of 10% from middepth of the beam because of the proximity of the opening edge to the flange. In this paper, available test results and theories relating to the strength of composite beams having eccentric rectangular openings are surveyed and experiments were carried out to examine the structural behaviors. In all the tests in this paper good agreement is demonstrated with maximum loads measured in tests, and observed failure modes Furthermore, compared with analytical values and experimental values of interaction diagram between moment and shear capacity were safed as it is scattered with outer part of the analytical values.

  • PDF

Resonance Condition of the Resonance Cavity and Air Gap in the Sacred Bell of the Great King Seongdeok (성덕대왕신종의 명동과 간극의 공명조건)

  • Kim, Seock-Hyun;Jeong, Won-Tae;Kang, Yun-June
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.4
    • /
    • pp.223-230
    • /
    • 2011
  • Korean bell is hung with some air gap between the bell bottom and the ground. In addition, it has a peculiar acoustic element, so called resonance cavity below the bell. A proper design of the air gap and cavity size dramatically amplifies the bell sound by resonance effect. Bell interior cavity, air gap and resonance cavity consist of an acoustic cavity system. When the acoustic cavity frequency coincides with the natural frequency of the bell body, the frequency component is significantly amplified. On the Sacred Bell of the Great King Seongdeok, this study proposes a resonance condition of the cavity system considering air gap effect for the first time. With the exact dimension of the bell, boundary element analysis is performed using SYSNOISE. Finally, this study reveals how the temperature in season influences the resonance condition and proposes a concept of variable type resonance cavity. By using the variable type resonance cavity, the cavity size is controlled on site and exact resonance is available regardless of temperature difference in season.

Effect of Social and Economic Levels of Adult Women on Anxiety and Depression Symptoms (성인여성의 사회·경제적 수준이 불안·우울증상에 미치는 영향)

  • Kim, Jin-Dong;Jung, Min-Young;Kim, Kyoung-Beom;Noh, Jin-Won
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.8
    • /
    • pp.29-38
    • /
    • 2016
  • The purpose of this study is to investigate the relationship between Korean women's experience of anxiety & depression and socioeconomic level. We used Korea National Health and Nutrition Examination Survey VI-1 data. Study population were consisted of 3,453 female adults, and used a binary logistic regression analysis to identify the relationship between socioeconomic status factors and experience of anxiety & depression after adjusting health factors. It was identified the variables that affect experience symptoms of anxiety & depression is age, marital status, education, income level, economic activity, health condition and stress. Based on the analysis, Korean women's socioeconomic level and anxiety & depression experience concluded to be associated. Thus, the program for low income, unemployed and low educated level women is needed.

Flow Analysis over Moving Circular Cylinder Near the Wall at Moderate Reynolds Number (낮은 레이놀즈 수에서 벽면에 근접하여 이동하는 실린더 주위의 유동해석)

  • Kwag, Seung-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1091-1096
    • /
    • 2012
  • The aerodynamic characteristics of circular cylinder in a channel are studied to make clear the flow feature by solving the Navier-Stokes equation based on the finite volume method with unstructured grids. Reviews are made on with the vorticity, velocity, dynamic pressure, residual and drag, where the Reynolds numbers are 50 and 100. The flows for $Re{\succeq}50$ shows the vortex shedding in the wake, and the result is the same as the case of moving cylinder. The ground effect of flat bottom results in the growth of vortex, being generated in the upper side of the cylinder and elongated in the rear. As the cylinder approaches to wall, for example 0.6, the cylinder plays as a role of blockage to obstruct the flow between the cylinder and wall. The drag coefficients are compared with others' results to confirm the validity of the present numerical simulation.

Fluid-Elastic Instability of Tube Bundles in Two-Phase Cross-Flow (2상 횡유동을 받는 튜브군의 유체탄성 불안정성)

  • 김범식;장효환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1948-1966
    • /
    • 1991
  • Two-phase cross-flow exists in many shell-tube heat exchangers such as condensers, reboilers and nuclear steam generators. To avoid problems due to excessive vibration, information on vibration excitation in two-phase cross-flow is required. Fluid-elastic instability is discussed in this paper. Four tube bundle configurations were subjected to increasing flow up to the onset of fluid-elastic instability. The tests were done on bundles with one flexible tube surrounded by rigid tubes. The fluid-elastic instability behavior is different for intermittent flows than for bubbly flows. For bubbly flows, the observed instabilities satisfy the relationship V/fd=K(2.pi..zeta. m/rho. $d^{21}$)$^{0.51}$ in which the minimum instability factor K was found to be 2.3 for bundles of p/d=1.22. The lowest critical velocities for fluid-elastic instability were experienced with parallel-triangular tube bundles. For intermittent flow, the observed instabilities did not follow the forgoing relation-ship. Significantly lower flow velocities were required for instability..

Numerical Simulation on the Behavior of Air Cloud Discharging into a Water Pool (수조로 방출되는 기포 거동에 대한 수치해석)

  • 김환열;김영인;배윤영;송진호;김희동
    • Journal of Energy Engineering
    • /
    • v.11 no.3
    • /
    • pp.237-246
    • /
    • 2002
  • If the safety depressurization system of APR-1400, the Korean next generation reactor, is in operation, water, air and steam are successively discharging into a in-containment refueling water storage tank through spargers. Among the phenomena occurring during the discharging processes, the air bubble clouds produce a low-frequency and high-amplitude oscillatory loading, which may result in the most significant damages to the submerged structures if the oscillation frequency is the same or close to the natural frequency of the structures. The involved phenomena are so complicated that most of the prediction of frequency and pressure loads has been resorted to experimental work and computational approach has been precluded. This study deals with a numerical simulation on the behavior of air bubble clouds discharging into a water pool through a sparger, by using a commercial thermal hydraulic analysis code, FLUENT, version 4.5. Among the multiphase flow models, the VOF (Volume Of Fluid) model was selected to simulate the water, air and steam flows. A satisfactory result was obtained comparing the analysis results with the ABB-Atom test results which had been performed for the development of sparser.

Improving Dimensional Accuracy of Micropatterns by Compensating Dynamic Balance of a Roll Mold (롤금형의 동적밸런스 보정을 통한 미세패턴 형상정밀도 향상)

  • Lee, Dong-Yoon;Hong, Sang-Hyun;Song, Ki-Hyeong;Kang, Eun-Goo;Lee, Seok-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.1
    • /
    • pp.33-37
    • /
    • 2011
  • In the fields of display, optics, and energy, it is important to improve micropattern-machining technology for achieving small patterns, large surface areas, and low cost. Unlike flat molds, roll molds have the following advantages: they can be manufactured within a short time, larger surface areas can be obtained, and continuous molding can be achieved. In this study, we aim to investigate the causes for errors in the shapes for a micropattern-machining process, and we show that by compensating the dynamic balance of roll molds, the dimensional accuracy of machined parts can be improved. The experimental results show that dynamic-balance compensation for a roll mold reduced the mass unbalance and the vibrations of the roll mold, and as a result, the dimensional accuracy of machined micropatterns has been improved.

Noise Source Identification of a Starter Motor using DOE (Design of Experiments: A Case Study) (실험계획법을 이용한 차량용 시동장치의 소음원 규명 및 개선 사례에 관한 연구)

  • Park, Soon-Sik;Lim, Byoung-Duk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.106-113
    • /
    • 2008
  • The starter motor noise is usually well identified by the customers since it is operated while the engine is quiet, and leaves distinct impressions of the vehicle. In this study the design of experiments(DOE) was applied to the identification of the noise sources of direct drive starter motor since this process usually requires lengthy analysis and elaborate experiments. In the first stage of the test, five controllable factors(alignment and dynamic unbalance of armature, tightening torques of T/bolt and center bracket bolt, and alignment of the center bracket-yoke-rear bracket), excluding static unbalance, are sorted out of all possible factors. Test results showed that the dynamic unbalance and misalignment of armature are the major factors. However, the error level of the first test was relatively high, indicating that there might be some missing major factors. In the second stage test the results showed that both static and dynamic unbalances are the dominant factors contributing to more than 80% of the overall noise, while the misalignment contributes around 12%. Error of the second test was about 4% that could be considered satisfactory. The noise level of the optimal product was predicted to be reduced by 19dBA, and verification test showed the average noise reduction of 16.8dBA with the standard deviation of 3.2dBA, and proved the usefulness of the whole DOE process.

Seismic Response Prediction of a Structure Using Experimental Modal Parameters from Impact Tests (충격시험에 의한 실험모드특성을 이용한 구조물의 지진응답 예측)

  • Cho, Sung-Gook;Joe, Yang-Hee;So, Gi-Hwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.75-84
    • /
    • 2010
  • An in-cabinet response spectrum should be generated to perform the seismic qualification of devices and instruments mounted inside safety-related electrical equipment installed in nuclear power plants. The response spectrum is available by obtaining accurate seismic responses at the device mounting location of the cabinet. The dynamic behavior of most of electrical equipment may not be easily analyzed due to their complex mass and stiffness distributions. Considering these facts, this study proposes a procedure to estimate the seismic responses of a structure by a combination of a test and subsequent analysis. This technique firstly constructs the modal equations of the structure by using the experiment modal parameters obtained from the impact test. Then the seismic responses of the structure may be calculated by a mode superposition method. A simple steel frame structure was fabricated as a specimen for the validation of the proposed method. The seismic responses of the specimen were estimated by using the proposed technique and compared with the measurements obtained from the shaking table tests. The study results show that it is possible to accurately estimate the seismic response of the structure by using the experimental modal parameters obtained from the impact test.

Bearing Capacity Characteristics of SIP Piles (SIP 공법의 지지력 특성에 관한 연구)

  • 박종배;김정수;정형식
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.51-60
    • /
    • 2003
  • As piling works in urban area are increasing, SIP which has low noise & vibration piling method takes the place of driven pile which has good bearing charateristics and is economical. Although SIP has been used far more than 15 years and it's use is increasing year by year, accurate analysis of bearing mechanism of SIP is not enough. So the design of SIP is much more conservative than driven pile. This paper is aimed at analysing the bearing charateristics of 103 SIPs constructed in Korea to give rational design criteria. Research result shows that bearing capacity of SIP is 40% lower than that of driven pile and conservative Meyerhof(20$\bar{N}_b'A_b$) method produced closer result to load test results than any other design method. And this result shows that in order to use optimised design criteria for the economical SIP design, quality control criteria must be settled down to produce high bearing capacity.