• Title/Summary/Keyword: 진동 감소

Search Result 1,143, Processing Time 0.038 seconds

Electrical and Magnetic Properties of Magnetite Powder during a Verwey Transition (Verwey 전이와 마그네타이트의 전기적 및 자기적 특성)

  • Yoon, Sunghyun
    • New Physics: Sae Mulli
    • /
    • v.68 no.12
    • /
    • pp.1302-1307
    • /
    • 2018
  • The crystallographic, electrical and magnetic behaviors of magnetite powder in the vicinity of its Verwey transition were investigated in this study. Magnetite was prepared by synthesizing a nanoparticle precursor and then annealing it at $800^{\circ}C$ for 1 h under a dynamic vacuum. Crystallographic and morphology analyses were done by using scanning electron microscope (SEM) and X-ray diffraction (XRD). The electrical and the magnetic properties were examined by using $M{\ddot{o}}ssbauer$ spectroscopy, vibrating sample magnetometer (VSM) and resistivity measurement. Both the magnetic moment and the resistivity showed discontinuous changes at the Verwey transition temperature ($T_V$). The temperature dependence of magnetic anisotropy constant showed a monotonic decrease with increasing temperature, with slight dip near $T_V$. $M{\ddot{o}}ssbauer$ spectra showed the superposition of two sextets, one from the tetrahedral (A) and the other from the octahedral (B) sites. The results revealed that identical charge states existed in the B site at temperatures both above and below $T_V$. A coordination crossover resulted in a transition from an inverse to a normal spinel at or close to $T_V$.

Development of Water-resistant Grout according to Blast Furnace Slag Fine Powder and Calcium Hydroxide Content (고로슬래그 미분말과 수산화칼슘 함유량에 따른 차수그라우트재 개발)

  • Seo, Hyeok;Park, Kyungho;Jeong, Sugeun;Kim, Daehyeon
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.541-555
    • /
    • 2020
  • The grouting method is used for reinforcing and waterproofing the soft ground, increasing the bearing capacity of structures damaged by lowering or subsidence due to rise and vibration, and for ordering. This study attempted to develop a blast furnace slag-based cementless grout material to increase the strength and hardening time of the grout material using reinforcing fibers. In this regard, in this study, it was used in combination with calcium hydroxide, which is an alkali stimulant of the three fine powders of blast furnace slag, and the content of calcium hydroxide was used by substituting 10, 20, and 30% of the fine powder of blast furnace slag. In addition, in order to compare the strength according to the presence or absence of reinforcing fibers, an experiment was performed by adding 0.5% of each fiber. As the content of carbon fibers and aramid fibers increased, the uniaxial compressive strength increased, and it was confirmed that the crosslinking action of the fibers in the grout material increased the uniaxial compressive strength. In addition, it was confirmed that the gel time sharply decreased as the content of the alkali stimulate increased.

A Study on Development of Portable Concrete Crack Measurement Device Using Image Processing Technique and Laser Sensors (이미지 처리기법 및 레이저 센서를 이용한 휴대용 콘크리트 균열 측정 장치 개발에 관한 연구)

  • Seo, Seunghwan;Ohn, Syng-Yup;Kim, Dong-Hyun;Kwak, Kiseok;Chung, Moonkyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.4
    • /
    • pp.41-50
    • /
    • 2020
  • Since cracks in concrete structures expedite corrosion of reinforced concrete over a long period of time, regular on-site inspections are essential to ensure structural usability and prevent degradation. Most of the safety inspections of facilities rely on visual inspection with naked eye, so cost and time consuming are severe, and the reliability of results differs depending on the inspector. In this study, a portable measuring device that can be used for safety diagnosis and maintenance was developed as a device that measures the width and length of concrete cracks through image analysis of cracks photographed with a camera. This device captures the cracks found within a close distance (3 m), and accurately calculates the unit pixel size by laser distance measurement, and automatically calculates the crack length and width with the image processing algorithm developed in this study. In measurement results using the crack image applied to the experiment, the measurement of the length of a 0.3 mm crack within a distance of 3 m was possible with a range of about 10% error. The crack width showed a tendency to be overestimated by detecting surrounding pixels due to vibration and blurring effect during the binarization process, but it could be effectively corrected by applying the crack width reduction function.

Evaluation on Workability and Compressive Strength Development of Concrete Using Modified Fly-Ash by Vibration Grinding (진동분쇄를 사용한 개질 플라이애시 콘크리트의 유동성 및 압축강도 발현 평가)

  • Ahn, Tae-Ho;Yang, Keun-Hyeok;Jeon, Young-Su
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.1
    • /
    • pp.66-74
    • /
    • 2021
  • The objective of this study is to evaluate the practical application potential and limitations of the modified fly ash(MFA) by vibration grinding as a partial replacement of ordinary portland cement(OPC). The test parameters investigated were the replacement level of fly ash(FA) and FA for OPC, varying from 10% to 40%, and curing temperatures of 5, 20, and 40℃. The various characteristics(including slump, air content, bleeding, setting time, compressive strength development, and hydration products) of MFA concrete were measured and then compared with those of the concrete with conventional FA. Test resul ts showed that the MFA prefers to FA in reducing the bl eeding of fresh concrete and enhancing the compressive strength gain at an early age. The compressive strength ratios between MFA and FA concrete specimens at an age of 1 day were 135%, 146%, and 111% at the curing temperatures of 5, 20, and 40℃, respectively. The corresponding ratios at an age of 28 days were approximately 110%, regardless of the curing temperatures. The X-ray diffraction analysis also revealed less calcium hydroxide products in MFA pastes than in FA pastes.

Development of Smart Speed Bump Using Non-newtonian Fluid (비뉴턴 유체를 이용한 스마트 과속방지턱 소재 개발)

  • Jung, Injun;Kim, Eunjung;Yu, Woong-Ryeol;Na, Wonjin
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.277-282
    • /
    • 2022
  • In this study, a smart material applicable to speed bumps was developed using low-cost starch and waterbased suspensions, and their properties were investigated. Viscosity and shear stress according to the shear rate was measured by a rheometer to observe shear thickening behavior according to starch concentration. The shear thickening phenomenon and applicability to speed bumps were identified macroscopically via drop weight test and bike driving test, measuring the vibration after impact with a driving speed of 5-25 km/h. As a result of the viscosity measurement, shear thickening occurred after the shear thinning region at the beginning, and the critical strain causing the shear thickening phenomenon decreased as the concentration of starch increased. Also, the viscosity and shear stress increased significantly with the increase of the starch concentration. As a result of the drop weight test and the bike driving test, the suspension was changed to a solid-like state in a short time, and the impact energy was absorbed in the fluid. The shear thickening phenomenon easily occurred as the concentration of the fluid and the applied impact (velocity) increased. Therefore, it can be proposed the development of a smart speed bump material that operates in the range of 5-25 km/h with a Non-Newtonian fluid based on water and starch.

Analysis of Dynamic Behavior on Group Piles in Two-Layered Sandy Ground (이층지반에 설치된 무리말뚝의 동적 거동 분석)

  • Heungtae Kim;Hongsig Kang;Kusik Jeong;Kwangkuk Ahn
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.10
    • /
    • pp.51-58
    • /
    • 2023
  • The dynamic behavior of the group piles supporting the superstructure in an earthquake is influenced by different complex dynamic mechanisms by the inertia force of the superstructure and the kinematic force of the ground. In an earthquake, The dynamic p-y curve is used to analyze the dynamic behavior of the pile foundation in consideration of the interaction of the ground, pile foundation, and superstructure due to the inertia force and the kinematic force. Most of the research has been conducted in order to confirm the dynamic p-y curve of the pile foundation by applying to the pile foundation installed on the single layered ground consisting of sand and clay, but the research for the multiple layered ground is insufficient. In this study, 1g shaking table tests were conducted to analyze the effect of the strata ratio of the top and bottom ground of the two layered sandy ground which has different relative densities on the dynamic behavior of group piles supporting the superstructure. The result shows that the maximum acceleration in the ground, the pile cap, and the superstructure increases as the strata ratio increases, and the location of the maximum bending moment of the pile foundation is changed. In addition, it was confirmed that the slope of the dynamic p-y curve of the pile foundation increased and decreased according to the strata ratio.

Comparison of voice range profiles of modal and falsetto register in dysphonic and non-dysphonic adult women (음성장애 성인 여성과 정상음성 성인 여성 간 진성구와 가성구의 음성범위프로파일 비교)

  • Jaeock Kim;Seung Jin Lee
    • Phonetics and Speech Sciences
    • /
    • v.14 no.4
    • /
    • pp.67-75
    • /
    • 2022
  • This study compared voice range profiles (VRPs) of modal and falsetto register in 53 dysphonic and 53 non-dysphonic adult women with gliding vowel /a/'. The results shows that maximum fundamental frequency (F0MAX), maximum intensity (IMAX), F0 range (F0RANGE), and intensity range (IRANGE) are lower in the dysphonic group than in the non-dysphonic group. F0MAX and F0RANGE are significantly higher in falsetto register than modal register in both groups. IMAX and IRANGE are significantly higher in falsetto register in the non-dysphonic group, but those are not different between two registers in the dysphonic group. There was no statistically significant difference in minimum F0 (F0MIN) and minimum intensity (IMIN) between the two groups. Modal-falsetto register transition occurred at 378.86 Hz (F4#) in the dysphonic group and 557.79 Hz (C5#) in the non-dysphonic group, which was significantly lower in the dysphonic group. It can be seen that both modal and falsetto registers in dysphonic adult women are reduced compared to non-dysphoinc adult women, indicating that the vocal folds of dysphonic adult women are not easy to vibrate in high pitches. The results of this study would be the basic data for understanding the acoustic features of voice disorders.

Effect of Skin Wrinkle Reduction Using Emulsions with Microbiome Extracts Selected by 3D Human Skin Equivalents (3차원 배양 인공피부를 활용한 마이크로바이옴 추출물의 선정 및 이를 함유한 에멀젼 제형의 피부주름개선 임상 평가)

  • Jun Woo Lim;Yerim Kim;Jimin Jeong;Ji-Eun Kwon;Seong-Hyun Jo;Jindong Jang;Junsu Park;Yun-Gon Kim;Jae Hyun Jeong
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.1
    • /
    • pp.47-58
    • /
    • 2023
  • Recently, along with the remarkable increase in interest in microbiome cosmetics, the application of microbiome extracts in the complex efficacy as anti-aging, brightening etc. has become very important. In this study, Bifidobacterium bifidum (B. bifidum), which has excellent anti-wrinkle efficacy among the microbiome, was selected through an in vitro test using cells and 3D human skin equivalents. And the anti-wrinkle efficacy of cosmetics containing B. bifidum was evaluated by clinical test. Thereafter, the cytotoxicity, anti-oxidation, anti-inflammatory and anti-wrinkle efficacy of the of the bifida fermented filtrate were tested. An emulsion containing bifida fermented filtrate at a concentration of 5% (v/v) with no cytotoxicity and excellent efficacy was prepared with the placebo emulsion. The clinical test was conducted on a total of 21 women at 2 weeks comparing the bifida emulsion and placebo emulsion. Wrinkles around the eyes were instrumentally evaluated using Antera 3D. The wrinkle reduction rate of the Bifida emulsion group compared with the placebo emulsion group differed by 5.6%. Overall, the selection of microbiome using 3D human skin equivalents and the efficacy study of cosmetics with the microbiome extracts would be actively studied to the development of microbiome cosmetics and skin microbiome mechanisms.

Analysis of Failure Behavior of Piles Embedded in Liquefied Soil Deposits (액상화 지반에 근입된 말뚝의 파괴거동 분석)

  • Cho, Chong-Suck;Han, Jin-Tae;Hwang, Jae-Ik;Park, Young-Ho;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.123-131
    • /
    • 2006
  • Liquefaction-induced lateral spreading has been the most extensive damage to pile foundations during earthquakes. Several cases of pile failures were reported despite the fact that a large margin of safety factor was employed in their design. In this study, 1-g shaking table tests were performed in order to analyze the failure behavior of piles embedded in liquefied soil deposits by buckling instability. As a result, it can be concluded that the pile subjected to excessive axial loads $(near\;P_{cr})$ can fail easily by buckling instability during liquefaction. When lateral spreading took place in sloping grounds, it was found that lateral loading due to lateral spreading increased lateral deflection of pile and reduced the buckling load. In addition, from the buckling shape of pile, difference between Euler's buckling and pile buckling vat observed. In the case of pile buckling, hinge formed at the middle point of the pile, not at the bottom. And in sloping grounds, location of hinge formation got lower compared with level ground because of the soil movements.

Experimental Study on the Diagnosis and Failure Prediction for Long-term Performance of ESP to Optimize Operation in Oil and Gas Wells (유·가스정 최적 운영을 위한 ESP의 장기 성능 진단 및 고장 예측 실험 연구)

  • Sung-Jea Lee;Jun-Ho Choi;Jeong-Hwan Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.2
    • /
    • pp.71-78
    • /
    • 2023
  • In general, electric submersible pumps (ESPs), which have an average life of 1.0 to 1.5 years, experience a decrease in performance and a reduction in life of the pump depending on oil and gas reservoir characteristics and operating conditions in wells. As the result, the failure of ESP causes high well workover costs due to retrieval and installation, and additional costs due to shut down. In this study, a flow loop system was designed and established to predict the life of ESP in long­term operation of oil and gas wells, and the life cycle data of ESP from the time of installation to the time of failure was acquired and analyzed. Among the data acquired from the system, flow rate, inlet and outlet temperature and pressure, and the data of the vibrator installed on the outside of ESP were analyzed, and then the performance status according to long-term operation was classified into five stages: normal, advice I, advice II, maintenance, and failed. Through the experiments, it was found that there was a difference in the data trend by stage during the long­term operation of the ESP, and then the condition of the ESP was diagnosed and the failure of the pump was predicted according to the operating time. The results derived from this study can be used to develop a failure prediction program and data analysis algorithm for monitoring the condition of ESPs operated in oil and gas wells.