• Title/Summary/Keyword: 진동 가속도

Search Result 944, Processing Time 0.026 seconds

Running Stability Assessment of a Railway Vehicle using Roller Rig Test (주행시험대 시험을 이용한 철도차량의 주행안정성 평가 방법 고찰)

  • Park, Joon-Hyuk;Park, Choon-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.5
    • /
    • pp.577-587
    • /
    • 2017
  • In the design process of dynamic characteristics of a railway vehicle, demand for analysis, testing and estimation methods of running stability are increasing as railway vehicle speed is increasing. Critical speed tests and estimation have been carried out using computer simulation or special test facilities, like roller rigs, because real track testing at critical speed is very dangerous. This paper introduces a test and assessment method for critical speed and estimates the validity using several roller rig tests. The test results show that it is difficult to estimate the critical speed using safety and instability assessment method in UIC 518, but that there is good agreement between the reduction of the equivalent damping ratio and the critical speed.

Rubber Composites with Piezoresistive Effects (고무 복합재료의 압저항 효과)

  • Jung, Joonhoo;Yun, Ju Ho;Kim, Il;Shim, Sang Eun
    • Elastomers and Composites
    • /
    • v.48 no.1
    • /
    • pp.76-84
    • /
    • 2013
  • The term 'Piezoresistive effect' describes a change in the electrical resistance of the material from deformed to its original shape by the external pressure, e.g., elongation, compression, etc. This phenomenon has various applications of sensors for monitoring pressure, vibration, and acceleration. Although there are many materials which have the piezoresistive effect, rubber (nano)composites with conductive fillers have attracted a great deal of attention because the piezoresistive effect appears at the various range of pressure by controlling the type of filler, particle size, particle shape, aspect ratio of particles, and filler content. Especially one can obtain the composites with elasticity and flexibility by using the rubber as a matrix. This paper aims to review the piezoresistive effect itself, their basic principles, and the various conductive rubber-composites with piezoresistive effect.

Development Of Qualitative Traffic Condition Decision Algorithm On Urban Streets (도시부도로 정성적 소통상황 판단 알고리즘 개발)

  • Cho, Jun-Han;Kim, Jin-Soo;Kim, Seong-Ho;Kang, Weon-Eui
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.6
    • /
    • pp.40-52
    • /
    • 2011
  • This paper develops a traffic condition decision algorithm to improve the reliability of traffic information on urban streets. This research is reestablished the criteria of qualitative traffic condition categorization and proposed a new qualitative traffic condition decision types and decision measures. The developed algorithm can be classified into 9 types for qualitative traffic condition in consideration of historical time series of speed changes and traffic patterns. The performance of the algorithm is verified through individual matching analysis using the radar detector data in Ansan city. The results of this paper is expected to help promotion of the traffic information processing system, real-time traffic flow monitoring and management, use of historical traffic information, etc.

Development of Pulsating Type Electromagnetic Hammer Drive Systems (맥동파 전자해머 구동시스템의 개발)

  • Ahn, Dong-Jun;Nam, Hyun-Do
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.269-274
    • /
    • 2016
  • This paper proposes the development of a low frequency electronic hammer drive system that is used to prevent scaling or clogging in the hopper process. The electro-mechanical hammering driving method involves the generation of vibration and impact energy. The operation principles of the electromagnetic hammer were considered by parallel/series spring coefficient analysis and the amount of kinetic energy generated was calculated from the product of the equivalent spring constant, which is coupled with the E core and the gap of between the E core and I core. In addition, the Pulsation Driving algorithm was applied to the proposed electromagnetic hammer to obtain the maximizing kinetic energy. This algorithm was then implemented by a logical AND operation process and micro-controller (atmega128) built in functions with a timer interrupt and PWM generation function. The driving circuit of the electromagnetic hammer was designed using the H-bridge type IGBT circuit. The experimental test was performed by usefulness of the developed electromagnetic hammer systems with the acceleration measurement method. The experimental result showed that the proposed system has good kinetic energy generation performance and can be applied to the hopper process.

Design on the interfacing between auto-pilot and water-jet drive system (Auto pilot 와 water jet drive system 간의 Interface 설계)

  • Jin, Hyong-Du;Choi, Jo-Cheon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.535-538
    • /
    • 2009
  • Auto Pilot is the system which move automatically the vessel through locating operation mode to automatic after entering operating course using a electronic chart or plotter. And water jet is the a propulsion system that make a power to push the vessel through spouting the accelerated water which is absolbed by the hole in the bottom of vessel. The water jet receive the effect of the depth of water lowly, it's acceletion efficiency is higher under high speed and have an advantage on vibrating and floating sound, so it's demand is increasing as new propulsion system. However, the signal systems of auto Pilot and water jet are defferant, we need the system to communicate between each system. We propose the interface system which communicate between Auto pilot and water jet efficiently in this journal.

  • PDF

A embodiment of the interface module for feed back control between auto-pilot with water-jet system (오토파일럿과 워터젯시스템의 피드백 제어계 인터페이스 모듈의 구현)

  • Oh, Jin-Seong;Choi, Jo-Cheon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.1108-1111
    • /
    • 2009
  • Auto Pilot is the system which move automatically the vessel through locating operation mode to automatic after entering operating course using a electronic chart or plotter. And water jet is the a propulsion system that make a power to push the vessel through spouting the accelerated water which is absorbed by the hole in the bottom of vessel. The water jet receive the effect of the depth of water lowly, it's acceleration efficiency is higher under high speed and have an advantage on vibrating and floating sound, so it's demand is increasing as new propulsion system. However, the signal systems of auto pilot and water jet are different, we need the system to interface between each system. We designed the interface that efficiently digital feed back control embedded module between auto pilot and water jet system in this paper.

  • PDF

Modal and Structural Analysis of Laser Cutter (레이저 절단기의 모드해석과 구조해석)

  • Kyu-Nam Cho;Rae-Young Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.3
    • /
    • pp.129-134
    • /
    • 1994
  • A Laser Cutter is designed for the precise fabrications in the shipyards recently. The cutter is a gantry type one with specified functions of movability and strength in order to satisfy the workability. The gantry frame should move with a certain velocity in a relatively short time for the proper cutting of the object materials. The gantry is fitted with ball screw and the acceleration field is formed by actuating this ball screw. The relative displacement should be within the allowable design criteria to make sure the precise cutting of the materials by the laser. In this paper, modal and structural analysis for a Laser Cutter which is commonly used in the shipyards, is carried out to check the design criteria of the system. The system is modeled by placing the proper shell and soils finite elements and fictitious mass properties to represent the real one. The way how to extract the loading conditions based on the given velocity criteria of the system is presented. Static structural analysis is performed and the results came out as expected. Modal analysis for finding eigen-values and mode shapes of the system is performed and it is shown that the time dependent dynamic analysis is unnecessary for this system for its operating circumstances.

  • PDF

Discussion for Ride Evaluation of High Speed Train by Using Inferential Statistics (추리통계학을 이용한 고속철도 승차감 평가에 대한 고찰)

  • Hwang, Hee-Soo;Kim, Seog-Won;Park, Chan-Kyeong;Mok, Jin-Yong;Kim, Ki-Hwan;Kim, Young-Guk
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.6
    • /
    • pp.543-549
    • /
    • 2008
  • The ride comfort is more important according to train speedup. Generally it is defined as the vehicle vibration. There are many studies on evaluation method of ride comfort for railway. But the ride comfort for Korean high speed train (HSR 350x) has been assessed by statistical method according to UIC 5l3R. In this paper, the ride indices, which were measured in the Korean high speed train. have been analyzed and reviewed by using the inferential statistics such as t-test, variance analysis (ANOVA) and regression analysis.

Comparison Between Performance of Wireless MEMS Sensors and an ICP Sensor With Earthquake-Input Ground Motions (지진 입력 진동대를 이용한 무선 MEMS 센서와 ICP 가속도계의 성능 비교)

  • Mapungwana, S.T.;Lee, Jong-Ho;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.2
    • /
    • pp.63-72
    • /
    • 2019
  • Wireless sensors are more favorable in measuring structural response compared to conventional sensors in terms of them being easier to use with no issues with cables and them being considerably cheaper. Previous tests have been conducted to analyze the performance of MEMS (Micro Electro Mechanical Systems) sensor in sinusoidal excitation tests. This paper analyzes the performance of in-built MEMS sensors in devices by comparing with an ICP sensor as the reference. Earthquake input amplitude excitation in shaking table tests was done. Results show that MEMS sensors are more accurate in measuring higher input amplitude measurements which range from 100gal to 250gal than at lower input amplitudes which range from 10gal to 50gal. This confirms the results obtained in previous sinusoidal tests. It was also seen that natural frequency results have lower error values which range from 0% to 3.92% in comparison to the response spectra results. This also confirms that in-built MEMS sensors in mobile devices are good at estimating natural frequency of structures. In addition, it was also seen that earthquake input amplitudes with more frequency contents (Gyeongju) had considerably higher error values than Pohang excitation tests which has less frequency contents.

Influence of Backfill Condition on Force Components of Gravity Walls During Earthquakes (지진시 배면지반 조건이 중력식 안벽의 하중성분에 미치는 영향)

  • Kim Sung-Ryul;Hwang Jae-Ik;Kim Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.1
    • /
    • pp.15-23
    • /
    • 2006
  • During earthquake, force components acting on quay walls consist of inertia force, earth pressure and water pressure. The earth pressure is largely influenced by the backfill condition such as soil density and the installation of gravel backfill. Therefore, shaking table tests were performed by using four different model sections, which were designed by varying the soil density and the backfill materials. The magnitude and the phase of force components acting on quay wall were analyzed. Test results showed that the gravel backfill and the soil compaction were effective to reduce the excess pore pressure in backfill and the magnitude and phase of backfill thrust were much influenced by the excess pore pressure in backfill. When the input acceleration was 0.10g, the average ratios of the inertia force, the front dynamic water force and the thrust to the total force were $64\%,\;21\%\;and\;16\%$, respectively. As the excess pore pressure increased, the ratio of the thrust to the total force increased.