DOI QR코드

DOI QR Code

Rubber Composites with Piezoresistive Effects

고무 복합재료의 압저항 효과

  • Jung, Joonhoo (Department of Chemical Engineering, Inha University) ;
  • Yun, Ju Ho (Enviromental Materials & Components R&D Center, Korea Automotive Technology Institute) ;
  • Kim, Il (The WCU Center for Synthetic Polymer Bioconjugate Hybrid Materials, Department of Polymer Science and Engineering, Pusan National University) ;
  • Shim, Sang Eun (Department of Chemical Engineering, Inha University)
  • Received : 2013.01.10
  • Accepted : 2013.01.23
  • Published : 2013.03.31

Abstract

The term 'Piezoresistive effect' describes a change in the electrical resistance of the material from deformed to its original shape by the external pressure, e.g., elongation, compression, etc. This phenomenon has various applications of sensors for monitoring pressure, vibration, and acceleration. Although there are many materials which have the piezoresistive effect, rubber (nano)composites with conductive fillers have attracted a great deal of attention because the piezoresistive effect appears at the various range of pressure by controlling the type of filler, particle size, particle shape, aspect ratio of particles, and filler content. Especially one can obtain the composites with elasticity and flexibility by using the rubber as a matrix. This paper aims to review the piezoresistive effect itself, their basic principles, and the various conductive rubber-composites with piezoresistive effect.

압저항 효과(piezoresistive effect)는 가해진 외부 압력이나 힘에 의해 전기적 저항이 변하는 것을 말한다. 이러한 압저항 효과는 압력, 진동, 가속 등을 탐지하는 센서에 많이 이용되고 있다. 압저항 효과를 갖는 재료가 많지만 그 중에서도 특히, 전도성 충전제를 첨가한 고무 복합체는 충전제의 종류, 입자 크기, 입자 모양, 입자 종횡비(aspect ratio), 그리고 입자의 양 등을 조절하여 다양한 압력 범위에서의 압저항 효과를 발현할 수 있고, 고무를 기질로 사용함으로써 복합체에 탄성과 유연성을 줄 수 있기 때문에 많은 관심을 받고 있다. 본 논문에서는 압저항 효과의 기본원리 및 다양한 고무 복합체의 압저항 효과에 대해 알아본다.

Keywords

References

  1. W. Thomson, "On the electro-dynamic qualities of metals:--effects of magnetization on the electric conductivity of nickel and of iron", Proc. R. Soc. Lodon., 8, 546 (1856). https://doi.org/10.1098/rspl.1856.0144
  2. J. W. Cookson, "Theory of the piezo-resistive effect", Phys. Rev., 47, 194 (1935).
  3. G. Canavese, M. Lombardi, S. Stassi and C. F. Pirri, "Comprehensive characterization of large piezoresistive variation of Ni-PDMS composites", Appl Mech Mater., 110, 1336 (2012).
  4. W. Brantley, "Calculated elastic constants for stress problems associated with semiconductor devices", J. Appl. Phys., 44, 534 (1973). https://doi.org/10.1063/1.1661935
  5. D. França and A. Blouin, "All-optical measurement of in-plane and out-of-plane Young's modulus and Poisson's ratio in silicon wafers by means of vibration modes", Meas. Sci. Technol., 15, 859 (2004). https://doi.org/10.1088/0957-0233/15/5/011
  6. I. S. Sokolnikoff and R. D. Specht, 'Mathematical theory of elasticity'. McGraw-Hill New York 1956.
  7. H. Rolnick, "Tension coefficient of resistance of metals", Phys. Rev., 36, 506 (1930). https://doi.org/10.1103/PhysRev.36.506
  8. X. W. Zhang, Y. Pan, Q. Zheng and X. S. Yi, "Piezoresistance of conductor filled insulator composites", Polym. Int., 50, 229 (2001). https://doi.org/10.1002/1097-0126(200102)50:2<229::AID-PI612>3.0.CO;2-U
  9. G. Ruschau, S. Yoshikawa and R. Newnham, "Resistivities of conductive composites", J. Appl. Phys., 72, 953 (1992). https://doi.org/10.1063/1.352350
  10. K. Ohe and Y. Naito, "A new resistor having an anomalously large positive temperature coefficient", Jpn. J. Appl. Phys., 10, 99 (1971). https://doi.org/10.1143/JJAP.10.99
  11. J. G. Simmons, "Electric tunnel effect between dissimilar electrodes separated by a thin insulating film", J. Appl. Phys., 34, 2581 (1963). https://doi.org/10.1063/1.1729774
  12. J. G. Simmons, "Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film", J. Appl. Phys., 34, 1793 (1963). https://doi.org/10.1063/1.1702682
  13. J. G. Simmons, "Low‐Voltage Current‐Voltage Relationship of Tunnel Junctions", J. Appl. Phys., 34, 238 (1963). https://doi.org/10.1063/1.1729081
  14. J. G. Simmons and G. J. Unterkofler, "Potential Barrier Shape Determination in Tunnel Junctions", J. Appl. Phys., 34, 1828 (1963). https://doi.org/10.1063/1.1702693
  15. M. Knite, V. Teteris, A. Kiploka and J. Kaupuzs, "Polyisoprene-carbon black nanocomposites as tensile strain and pressure sensor materials", Sens. Actuators A., 110, 142 (2004). https://doi.org/10.1016/j.sna.2003.08.006
  16. Z. M. Dang, M. J. Jiang, D. Xie, S. H. Yao, L. Q. Zhang and J. Bai, "Supersensitive linear piezoresistive property in carbon nanotubes/silicone rubber nanocomposites", J. Appl. Phys., 104, 024114 (2008). https://doi.org/10.1063/1.2956605
  17. L. Wang, T. Ding and P. Wang, "Effects of compression cycles and precompression pressure on the repeatability of piezoresistivity for carbon black‐filled silicone rubber composite", J. Polym. Sci. B, Polym. Phys., 46, 1050 (2008). https://doi.org/10.1002/polb.21438
  18. M. K. Abyaneh and S. K. Kulkarni, "Giant piezoresistive response in zinc-polydimethylsiloxane composites under uniaxial pressure", J. Phys. D, 41, 135405 (2008). https://doi.org/10.1088/0022-3727/41/13/135405
  19. L. Chen, G. Chen and L. Lu, "Piezoresistive Behavior Study on Finger‐Sensing Silicone Rubber/Graphite Nanosheet Nanocomposites", Adv. Funct. Mater., 17, 898 (2007). https://doi.org/10.1002/adfm.200600519
  20. D. Y. Jeong, J. Ryu, Y. S. Lim, S. Dong and D. S. Park, "Piezoresistive TiB2/silicone rubber composites for circuit breakers", Sens. Actuators A., 149, 246 (2009). https://doi.org/10.1016/j.sna.2008.11.022
  21. T. del Castillo-Castro, M. Castillo-Ortega, J. Encinas, P. Herrera Franco and H. Carrillo-Escalante, "Piezo-resistance effect in composite based on cross-linked polydimethylsiloxane and polyaniline: potential pressure sensor application", J. Mater. Sci., 47, 1794 (2012). https://doi.org/10.1007/s10853-011-5965-y
  22. W. Luheng, D. Tianhuai and W. Peng, "Influence of carbon black concentration on piezoresistivity for carbon-black-filled silicone rubber composite", Carbon, 47, 3151 (2009). https://doi.org/10.1016/j.carbon.2009.06.050
  23. T. Ding, L. Wang and P. Wang, "Changes in electrical resistance of carbon‐black‐filled silicone rubber composite during compression", J. Polym. Sci. Part B: Polym. Phys., 45, 2700 (2007). https://doi.org/10.1002/polb.21272
  24. L. Wang, T. Ding and P. Wang, "Effects of instantaneous compression pressure on electrical resistance of carbon black filled silicone rubber composite during compressive stress relaxation", Composites Sci. Technol., 68, 3448 (2008). https://doi.org/10.1016/j.compscitech.2008.08.018
  25. L. Wang, T. Ding and P. Wang, "Research on stress and electrical resistance of skin-sensing silicone rubber/carbon black nanocomposite during decompressive stress relaxation", Smart Mater. Struct., 18, 065002 (2009). https://doi.org/10.1088/0964-1726/18/6/065002
  26. A. Job, F. Oliveira, N. Alves, J. Giacometti and L. Mattoso, "Conductive composites of natural rubber and carbon black for pressure sensors", Synth. Met., 135, 99 (2003).
  27. D. Bloor, K. Donnelly, P. Hands, P. Laughlin and D. Lussey, "A metal-polymer composite with unusual properties", J. Phys. D., 38, 2851 (2005). https://doi.org/10.1088/0022-3727/38/16/018
  28. M. Hussain, Y. H. Choa and K. Niihara, "Fabrication process and electrical behavior of novel pressure-sensitive composites", Composites. Part A., 32, 1689 (2001). https://doi.org/10.1016/S1359-835X(01)00035-5