• 제목/요약/키워드: 진동물체

Search Result 231, Processing Time 0.022 seconds

Speed Estimation of Moving Object using GPS and Accelerometer (GPS와 가속도계를 이용한 이동 물체의 속도 추정)

  • Yeom, Jeong-Nam;Lee, Geum-Boon;Park, Jong-Min;Cho, Beom-Joon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.425-428
    • /
    • 2008
  • To overcome the limitation of tracking speed on signal-shaded area and the discontinuity of GPS, we present a system which estimates the speed of moving object using GPS and accelerometer. This system is designed to correct accelerometer's noises which are caused by vibration and impact to the object and errors of itself, from the navigation information of GPS receiver and accelerometer which are installed to moving object. And using this information, it estimates the speed of moving object on GPS signal-shaded area to complement discontinuity of GPS navigation information. We designed Kalman Filter structure using GPS and accelerometer to apply this system, and verify that the system can estimate object's speed on GPS signal-shaded area. Finally, we present the possibilities applying to telematics systems like automatic navigation system.

  • PDF

A study of motion characteristics along the connection methods between the floating body and the wave energy convertor (파력발전기의 가동부유체와 본체 사이의 연결방식에 따른 운동특성 연구)

  • Kim, Sung-Soo;Lee, Jong-Hyun;Kang, Dong-Hoon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.10a
    • /
    • pp.17-18
    • /
    • 2014
  • Wave energy generation system is sorted as oscillating water chamber type, over topping device type and wave activating body type. The wave activating body type converts from wave energy to kinetic of the machine one and the power generation amount increases while the motion of a activating body increases. In this paper the wave energy convertor consists of a main body which has a generation system and the activating body. They are connected by a bar type bridge. The twisting moment and angular velocity at a shaft of convertor are calculated when various condition of the incident wave, a diversity of connection methods between the main body and the activating body. It can be used as basic idea for determining the design of wave activating body type convertor.

  • PDF

A study on the shock & vibration characteristics of a tractor-trailer type vehicle system running on the road (트랙터-트레일러형 차량 시스템의 주행 충격진동 특성에 관한 연구)

  • 김종길
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.13-19
    • /
    • 2001
  • It is known that displacements, velocities and accelerations of the tractor- trailer type vehicle system in shock & vibration analysis by the flexible-multi-body dynamics including the flexibility of structure are bigger and more repetitive than them by the rigid-multi-body dynamics, and it is necessary to prove above results by the experimental field test. Therefore, in this paper, theoretical analysis by the flexible-multi-body dynamics and experimental field test for a tractor-trailer type vehicle system are conducted and their results are compared with each other. Because of unexpected metal contact and impact in the air coupler part in the field test, some accelerations measured from the experimental field test are bigger than them analyzed from the theoretical analysis, but most accelerations are well coincide with each other in the amplitudes and trends. Thus more refined dynamic analytical models for some special type vehicle systems will be possible in the future.

  • PDF

Dynamic Analysis of a Very Flexible Cable Carrying A Moving Multibody System (다물체 시스템이 이동하는 유연한 케이블의 동역학 해석에 관한 연구)

  • 서종휘;정일호;한형석;박태원
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.2
    • /
    • pp.150-156
    • /
    • 2004
  • In this paper, the dynamic behavior of a very flexible cable due to moving multibody system along its length is presented. The very deformable motion of a cable is presented using absolute nodal coordinate formulation, which is based on the finite element procedures and the general continuum mechanics theory to represent the elastic forces. Formulation for the sliding joint between a very flexible beam and a rigid body is derived. In order to formulate the constraint equations of this joint, a non-generalized coordinate, which has no inertia or forces associated with this coordinate, is used. The modeling of this sliding joint is very important to many mechanical applications such as the ski lifts. cable cars, and pulley systems. A multibody system moves along an elastic cable using this sliding joint. A numerical example is shownusing the developed analysis program for flexible multibody systems that include a large deformable cable.

Multi-body Dynamic Analysis for the Drivetrain System of a Large Wind Turbine Based on GL 2010 (GL 2010 기반 대형 풍력터빈 드라이브트레인 시스템 다물체 동역학 해석기법)

  • Jeong, Dae-Ha;Kim, Dong-Hyun;Kim, Myung-Hwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.5
    • /
    • pp.363-373
    • /
    • 2014
  • In this study, computational multi-body dynamic analyses for the drivetrain system of a 5 MW class offshore wind turbine have been conducted using efficient equivalent modeling technique based on the design guideline of GL 2010. The present drivetrain system is originally modeled and its related system data is adopted from the NREL 5 MW wind turbine model. Efficient computational method for the drivetrain system dynamics is proposed based on an international guideline for the certification of wind turbine. Structural dynamic behaviors of drivetrain system with blade, hub, shaft, gearbox, supports, brake disk, coupling, and electric generator have been analyzed and the results for natural frequency and equivalent torsional stiffness of the drivetrain system are presented in detail. It is finally shown that the present multi-body dynamic analysis method gives good agreement with the previous results of the 5 MW class wind turbine system.

Multibody Dynamic Simulation and Running Characteristics of DMT Freight (다물체 동역학해석을 이용한 DMT 화차의 주행특성 연구)

  • Lee, Seung-Il;Eom, Beom-Gyu;Lee, Hi-Sung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.1
    • /
    • pp.35-41
    • /
    • 2009
  • Through the multibody dynamic simulation, the analysis model of the modalohr freight car of the DMT freight car was developed. By using the developed analysis model, the running dynamic characteristics was inquired through the dynamic analysis about the modalohr freight car. As the running speed and the primary suspension were increased, the lateral and vertical vibration accelerations of the car-body and the bogie were also increased. In case of the lateral vibration acceleration of the car-body, however, review should be considered since it can be influenced by the nonlinear characteristic of the primary suspension. The lateral and vertical vibration of the car-body were generated at the frequency of $2{\sim}3\;Hz$ and $7{\sim}8\;Hz$. And the lateral and vertical vibration of the bogie were generated at the frequency of $25{\sim}35\;Hz$ at the low speed section, $40{\sim}50\;Hz$ at the high speed section.

A Study on Resonance Durability Analysis of Vehicle Suspension System (차량 현가 시스템의 공진내구해석에 대한 연구)

  • 이상범;한우섭;임홍재
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.6
    • /
    • pp.512-518
    • /
    • 2003
  • In this paper, resonance durability analysis is performed for the fatigue life assessment considering vibration effect of a vehicle system. In the resonance durability analysis, the frequency response and the dynamic load on frequency domain are used. Multi-body dynamic analysis, finite element analysis, and fatigue life prediction method are applied for the virtual durability assessment. To obtain the frequency response and the dynamic load history, the computer simulations running over typical pothole and Belgian road are carried out by utilizing vehicle dynamic model. The durability estimations on the rear suspension system of the passenger car are performed by using the resonance durability analysis technique and compared with the quasi-static durability analysis. The study shows that the fatigue life considering resonant frequency of vehicle system can be effectively estimated in early design stage.

Experimental Study on Underwater Transient Noise Generated by Water-Entry Impact (입수 충격 수중 순간 소음에 대한 실험적 연구)

  • Jung, Youngcheol;Seong, Woojae;Lee, Keunhwa;Kim, Hyoungrok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.1
    • /
    • pp.10-20
    • /
    • 2014
  • To study the water-entry impact noise, on-board experiment using a small launcher firing various objects was performed in the Yellow Sea. As the launcher fires a cylindrical object from the ship vertically, generated noise is measured with a hydrophone on the starboard of Chung-hae, Marine surveyor. Three types of cylindrical objects, which have noses of flat-faced, conical, and hemisphere, were used during the experiment. The measured noise exhibits a time-dependency which can be divided into three phases: (1) initial impact phase, (2) open cavity flow phase, (3) cavity collapse and bubble oscillation phase. In most cases, the waveform of bubble oscillation phase is dominant rather than that of initial impact phase. Pinch-off time, where a cavity begins to collapse, occurs at 0.18 ~ 0.2 second and the average lasting time of bubble was 0.9 ~ 1.3 second. The energy of water-entry impact noise is focused in the frequency region lower than 100 Hz, and the generated noise is influenced by the nose shapes, object mass, and launching velocity. As a result, energy spectral density on the bubble frequency is higher in the order of flat-faced, conical, hemisphere nose, and the increase of initial energy raises the energy spectral density on the bubble frequency in the cylinder body of same shape. Finally, we compare the measurements with the simulated signals and spectrum based on the bubble explosion physics, and obtain satisfactory agreements between them.

Efficient Super-element Structural Vibration Analyses of a Large Wind-turbine Rotor Blade Considering Rotational and Aerodynamic Load Effects (회전 및 풍하중 가진 효과를 고려한 대형 풍력발전 로터의 효율적인 슈퍼요소 구조진동해석)

  • Kim, Dong-Man;Kim, Dong-Hyun;Park, Kang-Kyun;Kim, Yu-Sung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.7
    • /
    • pp.651-658
    • /
    • 2009
  • In this study, computer applied engineering(CAE) techniques are fully used to efficiently conduct structural and dynamic analyses of a huge composite rotor blade using super-element. Computational fluid dynamics(CFD) is used to predict aerodynamic loads of the rotating wind-turbine blade. Structural vibration analysis is conducted based on the non-linear finite element method for composite laminates and multi-body dynamic simulation tools. Various numerical results are presented for comparison and the structural dynamic behaviors of the rotor blade are investigated herein.

Measurement Method of the Vibration Mode Shapes Using Electro-Optic Holographic Interferometry (전자 광학적 훌로그래픽 간섭법을 이용한 진동물체의 모드형태 계측법)

  • Choi, Jang-Seob;Kang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.2
    • /
    • pp.564-574
    • /
    • 1996
  • This paper describes as Electronic Speckle Pattern Interferometry system which has been designed for measuring vibration patterns and quantitative measurement of vibration amplitude fields by using the time average method on a object. Visbility of fringe patterns is more improved by using the phase stepping and frame average method to reduce speckle and electric noise. And a bias vibration is introduced into the reference beam to shift the $\frac{2}{0}$ fringes so that fringe shift algorithms can be used to determine vibration amplitude. The experimental results are compared to those of the FFT analyzer and the FEM model analysis.