• Title/Summary/Keyword: 진동물체

Search Result 231, Processing Time 0.024 seconds

A Study on Radial Electronic Shearography for Measuring Amplitudes of Vibration of Symmetrical Objects (대칭형 물체의 진동 진폭 분포 측정을 위한 레이디얼 전단 간섭계에 대한 연구)

  • Kang, Young-June;Choi, Jang-Seob;Rho, Kyung-Wan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.12
    • /
    • pp.9-16
    • /
    • 1997
  • In this paper, a newly radial electronic shearography system was developed in order to study vibration characteristics of symmetrical objects. We utilized the electro-optic holography theory for quantificational analysis and a porror prism for shearing two inages radially in this study. These image data obtained by this shearography give us various distributions of the gradient of vibration amplitude, and they are useful informations to study vibrational characteristics of symmetrical objects. Finally this developed system with phase stepping and modulation was applied to fans and disks to inspect characteristics of the vibration and the blance of symmetrical objects and obtained good results.

  • PDF

Effects of Suspension Compliance and Chassis Flexibility in Handling Performance (현가장치의 유연성과 차체의 탄성효과가 조종안정성에 미치는 영향 분석)

  • Kang, Dong-Kwon;Yoo, Wan-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.7
    • /
    • pp.137-143
    • /
    • 1997
  • In this study, handling simulation of a passenger car is carried out to see the effects of suspension compliance, roll stabilizef bar and chassis flexibility. The front suspension of the car is a MacPherson strut type and the rear suspension is a multi-link type. The following five DADS models are constructed and compared to verify the effects of suspension compliance and chassis flexibility during lane change. (1) Vdhicle model without hard point compliance and stabilizer, (2) Vehicle model with hard point compoiance, (3) Vehicle model with hard point compliance and stabilizer, (4) Vehicle model with hard point compoiance, stabilizer, and one vibration mode of the chaxxis. (5) Vehicle model with hard point compliance, stabilizer, and three vibration modes of the chassis. The result shows that hard point compliance and stabilizer are significant in roll angle, and the flexibility of the chassis affects the yaw angle and yaw rate.

  • PDF

Numerical Analysis of Vortex Induced Vibration of Circular Cylinder in Lock-in Regime (Lock-in 영역에서 원형실린더의 와류유기진동 전산해석)

  • Lee, Sungsu;Hwang, Kyu-Kwan;Son, Hyun-A;Jung, Dong-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.1
    • /
    • pp.9-18
    • /
    • 2016
  • The slender structures such as high rise building or marine riser are highly susceptible to dynamic force exerted by fluid-structure interactions among which vortex-induced vibration(VIV) is the main cause of dynamic unstability of the structural system. If VIV occurs in natural frequency regime of the structure, fatigue failure likely happens by so-called lock-in phenomenon. This study presents the numerical analysis of dynamic behavior of both structure and fluid in the lock-in regimes and investigates the subjacent phenomena to hold the resonance frequency in spite of the change of flow condition. Unsteady and laminar flow was considered for a two-dimensional circular cylinder which was assumed to move freely in 1 degree of freedom in the direction orthogonal to the uniform inflow. Fluid-structure interaction was implemented by solving both unsteady flow and dynamic motion of the structure sequentially in each time step where the fluid domain was remeshed considering the movement of the body. The results show reasonable agreements with previous studies and reveal characteristic features of the lock-in phenomena. Not only the lift force but also drag force are drastically increasing during the lock-in regime, the vertical displacement of the cylinder reaches up to 20% of the diameter of the cylinder. The correlation analysis between lift and vertical displacement clearly show the dramatic change of the phase difference from in-phase to out-of-phase when the cylinder experiences lock-in. From the results, it can be postulated that the change of phase difference and flow condition is responsible for the resonating behavior of the structure during lock-in.

Vibration Analysis of Compressor and Pipe Using RecurDyn (RecurDyn 을 이용한 압축기 및 배관 진동 해석)

  • Kwon, Seungmin;Son, Youngboo;Ha, Jonghun;Yoo, Hong Hee
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.2
    • /
    • pp.117-124
    • /
    • 2015
  • Recently, noise reduction in room air conditioner has been one of the most important issues as well as cooling efficiency. A rotary compressor is widely used in room air conditioners. But, the rotary compressor is the dominant vibration/noise source in an air conditioner. A number of studies have been conducted on reducing rotary compressor vibration/noise through improving muffler and resonator design. However, a noise delivering path between compressor and pipe is not fully taken into consideration. In this paper, the vibration analysis model of rotary compressor is modeled using RecurDyn and experimental validation is presented.

A Strategy for Moving mass Systems from One Point to Another without Inducing Residual Vibration (잔류진동 없이 질량계를 한 위치에서 다른 위치로 옮기기 위한 전략)

  • Yoon, Byung Ok;;Karnopp, Bruce H.
    • Journal of KSNVE
    • /
    • v.4 no.1
    • /
    • pp.83-88
    • /
    • 1994
  • In many circumstances, it is desired to move a mass from one position to another without inducing and vibration in the mass being moved. Two such problems are considered here : the motion of a mass initiated by another mass, nd the motion of a pendulum initiated by the specified motion of its support. In each case, it is dosired that the system start at rest and come to rest in the second position. A simple strategy for the specified motion is given here. The method is motivated by engine cam-follower design. The force required to move the system in question is determined as well as the maximum value of the force required(and the times at which these forces take place).

  • PDF

A Study on the Development of the VTL Vehicle Dynamics Model to Analyze Vibration Characteristics (차량 진동특성 해석을 위한 VTL 차량 모델 개발에 관한 연구)

  • Kwon, Seong-Jin;Bae, Chul-Yong;Kim, Chan-Jung;Lee, Bong-Hyun;Koo, Byoung-Kook;Rho, Guck-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.409-414
    • /
    • 2007
  • Nowadays, with the advancement of computational mechanics, and vehicle dynamics simulation linked up with virtual testing laboratory(VTL) and virtual proving ground(VPG) technologies has become a useful method for analyzing numerous driving performances and diverse noise/vibration characteristics. In this paper, the analytical vehicle model based on multi-body dynamics theory was developed to investigate the vibration characteristics according to various road conditions. For the purpose, the whole vehicle parameters, each vehicle's part parameter, and part connecting elements such as spring, damper, and bush were measured by an experiment. Also, the vehicle dynamics model, which includes the front suspension, rear suspension, steering, front wheel, rear wheel, and body subsystems has been constructed for computer simulation. With the developed vehicle dynamics model, three forces and three moments measured at each wheel center were applied to evaluate and analyze dynamics and vibration characteristics for miscellaneous road conditions.

  • PDF

Automotive Windshield Wiper Linkage Dynamic Modeling for Vibration Analysis (자동차 와이퍼 링키지의 진동해석을 위한 동역학 모델링)

  • Lee, Byoung-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.4
    • /
    • pp.465-472
    • /
    • 2008
  • An automotive windshield wiper system is modeled mainly for vibration analysis purpose. The model is composed of solid links, ideal joints, imperfect joints to simulate unavoidable manufacturing defects and bushings having stiffness, contact between a wiper blade and a wind screen glass, friction, a spring and an actuator. Main stream of wiper dynamics analysis has been obtaining a closed form of system of equations using Newton's or Lagrange's formula and doing a numerical simulation study to understand and predict the behavior of it. However, the modeling process is complex since a wiper system is of multibody and a contact problem occurs. When imperfection, such as dead zone of a joint and stiffness of a rubber bushing, should be included, the added complexity makes the modeling difficult. Since the imperfection is understood as main cause of problematic vibration, the dynamics model of a wiper system aiming vibration analysis should include such unavoidable manufacturing defects in the model. An open form of dynamic model of a automotive windshield wiper system with imperfect joints using a commercial software is obtained and a simulation analyssis is conducted for vibration reduction study.

Vibration Characteristics of Ultrasonic Object Levitation Transport System according to the Flexural Beam Shape (Flexural Beam 형상에 따른 초음파 물체 부상 이송 시스템의 진동 특성)

  • Jeong S.H.;Shin S.M.;Kim G.H.;Lee S.H.;Kim J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.331-332
    • /
    • 2006
  • Transport systems which are the important part of the factory automation have much influence on improving productivity. Object transport systems are driven typically by the magnetic field and conveyer belt. In recent years, as the transmission and processing of information is required more quickly, demands of optical elements and semiconductors increase. However, conventional transport systems are not adequate for transportation of those. The reason is that conveyor belts can damage precision optical elements by the contact force and magnetic systems can destroy the inner structure of semiconductor by the magnetic field. In this paper, the levitation transport system using ultrasonic wave is developed for transporting precision elements without damages. Vibration modes of each flexural beam are verified by using Laser Scanning Vibrometer.

  • PDF

Ride Quality Analysis Using Seated Human Vibration Modeling (시트-인체 진동 모델링을 이용한 승차감 해석)

  • Kang, Ju Seok
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.3
    • /
    • pp.194-202
    • /
    • 2015
  • In this paper, dynamic modeling with viscoelastic properties of a human body resting on a seat is presented to quantitatively analyze ride quality of passengers exposed to vertical vibrations. In describing the motions of a seated body, a 5 degree-of-freedom multibody model from the literature is investigated. The viscoelastic characteristics of seats used in railway vehicles are mathematically formulated with nonlinear stiffness characteristics and convolution integrals representing time delay terms. Transfer functions for the floor input are investigated and it is found that these are different in accordance with the input magnitude due to nonlinear characteristics of the seat. Measured floor input at the railway vehicle is used to analyze realistic human vibration characteristics. Frequency weighted RMS acceleration values are calculated and the effects of the seat design parameters on the frequency weighted RMS acceleration values are presented.

An Analysis of Vibration Characteristics in Ultrasonic Object Levitation Transport System (초음파를 이용한 물체 부상 이송시스템의 진동 특성 해석)

  • Jeong S.H.;Kim H.U.;Choi S.B.;Kim G.H.;Park J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.415-418
    • /
    • 2005
  • In the semiconductor and optical industry, a new transport system which can replace the conventional transport systems is required. The transport systems are driven by the magnetic field and conveyer belts. The magnetic field may damage semiconductor and the contact force may scratch the optical lens. The ultrasonic wave driven system can solve these problems. In this semiconductor and optical industry, the non-contact system is required fur reducing the damages. The ultrasonic transportation is the solution of the problem. In this paper, the ultrasonic levitation system fur levitating object are proposed. The 3D vibration profiles of the beam are measured by Laser scanning Vibrometer fur verifying the vibration characteristics of the system and the amplitudes of the beam and the levitation heights of object are measured for evaluating the performance.

  • PDF