• Title/Summary/Keyword: 진동대

Search Result 806, Processing Time 0.022 seconds

Vibration Control Performance of a Two-way Tuned Liquid Mass Damper Using Real-time Hybrid Shaking Table Testing Method (실시간 하이브리드 진동대 실험법에 의한 양방향 TLMD의 진동제어 성능평가)

  • Heo, Jae-Sung;Lee, Sung-Kyung;Park, Eun-Churn;Lee, Sang-Hyun;Kim, Hong-Jin;Jo, Ji-Seong;Cho, Bong-Ho;Min, Kyung-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.5
    • /
    • pp.485-495
    • /
    • 2008
  • An experimental real-time hybrid method, which implements the vibration control of a building structure with only a two-way TLMD, is proposed and verified through a shaking table test. The building structure is divided into the upper experimental TLMD and the lower numerical structural part. The shaking table vibrates the TLMD with the response calculated from the numerical substructure, which is subjected to the excitations of the measured interface control force at its top story and sinusoidal waves input at its base. The results show that the conventional method can be replaced by the proposed methodology with a simple installation and accuracy for evaluating the control performance of a TLMD.

Shaking Table Test of a Full Scale 3 Story Steel Frame with Friction Dampers (마찰형 감쇠장치가 설치된 실물크기 3층 철골프레임의 진동대 실험)

  • Bae, Chun-Hee;Kim, Yeon-Whan;Lee, Sang-Hyun;Park, Young-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.9
    • /
    • pp.862-873
    • /
    • 2007
  • Energy dissipation devices can be considered as an alternative for the seismic performance enhancement of existing structures based on the strengthened seismic design code. In this study, seismic response mitigation effects of friction dampers are investigated through the shaking table test of a full scale 3 story building structure. Frist, the bilinear force-displacement relationship of a structure-brace-friction damper system and the effect of brace-friction damper on the increase of frequency and damping ratio are identified. Second, frequency, displacement, and torque dependent characteristics of the friction damper are investigated by using harmonic load excitation tests. Finally, the shaking table tests are performed for a full scale 3 story steel frame. System identification results using random signal excitation indicated that brace-friction damper increased structural damping ratio and frequency, and El Centro earthquake test showed that brace-friction damper reduced the peak displacement and acceleration significantly. In particular, it was observed that the damping effect due to friction damper becomed obvious when the structure was excited by more intensive load causing frequent slippage of the friction dampers.

Seismic Performance Evaluation of Concrete Anchors used in Power Plant Equipment by Shaking Table Tests (진동대 실험을 통한 발전기기용 콘크리트 앵커의 성능평가)

  • Lee, Sang-Moon;Jeon, Bub-Gyu;Jung, Woo-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.1
    • /
    • pp.21-28
    • /
    • 2021
  • The main purpose of this study is to assess the safety of the fixed anchorages subjected to the seismic motion for an operating facilities in the actual power plant. Thus, the experimental study was conducted to investigate the load response in the event of an actual seismic to the anchorages of a nonstructural components. Since there are economic and spatial constraints to study nonstructural components that actually have various forms, alternative test specimens of steel frames with mass were built and the shaking table test was carried out. In order to evaluate the dynamic characteristics and seismic performance, the natural frequency of the target structure was identified through the shaking table test and then the load response characteristics of the anchorage were evaluated by generating an artificial seismic effect like actual seismic. Finally, the structural stiffness was reinforced by fixing the steel frame to the test specimen using bolts, thereby reducing the load transmitted to the anchorage. It will be carried out on the reliability verification of the experiments and areas that have not been carried out due to the site conditions through the analytical approach in the future.

상후두운동과 경부외후두근의 근전도검사에 관한 연구

  • An, Chul-Min;Jang, Hoon
    • Proceedings of the KSLP Conference
    • /
    • 1997.11a
    • /
    • pp.265-265
    • /
    • 1997
  • 음성이란 성대내근과 성대외근의 운동에 의해 진성대에서 규칙적이고 조화로운 진동이 이루어져 나타나는 것으로, 이러한 운동 등에 이상이 생기거나 진성대에 기질적인 변화가 왔을 때 음성이 변하게 된다. 그러나 이런 환자들의 진단을 위하여 후두소견을 관찰해 보면 진성대 뿐만 아니라, 상후두에서도 여러 가지 양상의 다른 움직임을 확인할 수가 있는데, 상후두는 진성대와는 달리 특별한 자체를 움직일 만한 근육들이 발달되어 있지 않은 구조물임에도 불구하고 여러 다른 발성에 따라 다양한 움직임을 나타내게 된다. 이러한 것들은 진성대와 연결되어 있는 성대내근이나 후두의 외부에 붙어있는 성대외근의 영향에 의해 나타날 수가 있다고 생각이 되고, 이러한 것들은 일차적으로 또는 이차적으로 성대의 진동에 영향을 줄 수 있을 것으로 생각된다. 이에 저자들은 발성시 상후두의 움직임과 성대외근과의 관계를 확인하기 위하여 상후두의 움직임을 여러 가지 모양으로 만들도록 훈련한 후 스트로보스 3102;을 이용하여 상후두의 움직임을 확인하면서, 각각의 경우에 따라 근육의 수축정도를 비교할 수 있고 비침습적인 표면전극을 이용한 근전도 검사를 시행하여 이들에 관한 연구를 하였다.다.

  • PDF

A Shaking Table Test for Equipment Isolation in the NPP (II): FPS (원전기기의 면진을 위한 진동대 실험 II : FPS)

  • Kim, Min-Kyu;ZChoun, Young-Sun;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.5 s.39
    • /
    • pp.79-89
    • /
    • 2004
  • This paper presents the results of experimental studies on the equipment isolation effect in the nuclear containment. For this purpose, shaking table tests were performed. The purpose of this study is enhancement of seismic safety of equipment in the Nuclear Power Plant. The isolation system, known as Friction Pendulum System (FPS), combines the concepts of sliding bearings and pendulum motion was selected. Peak ground acceleration, bidirectional motion, effect of vertical motion and frequency contents of selected earthquake motions were considered. As a result, these are founded that the vertical motion of seismic wave affect to the base isolation and the isolation effect decreased in case of near fault earthquake motion.

A Shaking Table Test for Equipment Isolation in the NPP (I): Rubber Bearing (원전기기의 면진을 위한 진동대 실험 I : 고무베어링)

  • Kim, Min-Kyu;Choun, Young-Sun;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.5 s.39
    • /
    • pp.65-77
    • /
    • 2004
  • In this study, the base isolation systems for equipment in the NPP are presented and the responses of each isolation system are investigated. As for the base isolation systems, a natural rubber bearing (NRB) and a high damping rubber bearing (HDRB) are selected. As input motions, artificial time histories enveloping the US NRC RG 1.60 spectrum and the probability-based scenario earthquake spectra developed for the Korean nuclear power plant site as well as a typical near-fault earthquake record are used. Uniaxial, biaxial, and triaxial excitations are conducted with PGAs of 0.1, 0.2 and 0.25g. The reduction of the seismic forces transmitted to the equipment models are determined for different isolation systems and input motions.

Analytical Simulation of the Seismic Response of a High-Rise RC Building Model (고층 철근콘크리트 건축구조모델의 지진응답에 대한 해석적 모사)

  • Lee, Han-Seon;Lee, Jeong-Jae;Jung, Dong-Wook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.5
    • /
    • pp.1-10
    • /
    • 2008
  • A series of shaking table tests were conducted on a 1:12 scale model using scaled Taft N21E earthquake records to investigate the seismic performance of a 17-story high-rise reinforced concrete building structure with a high degree of torsional eccentricity and soft-story irregularities in the bottom two stories. The main characteristics of the behaviors were: (1) a sudden change of the predominant vibration mode from the mode of translation and torsion to the torsional mode after the flexible side underwent a substantial inelastic deformation; (2) an abrupt increase in the torsional stiffness during this change of modes; (3) a warping behavior of the wall in the torsional mode; and (4) a unilateral overturning moment in the transverse direction to the table excitations. In this study, efforts were made to simulate the above characteristics using a nonlinear analysis program, Perform3D. The advantages and limitations are presented with the nonlinear models available in this software, as they are related to the correlation between analysis and test results.

Centrifuge-Shaking Table Test for Seismic Performance Evaluation of Subway Station (지하역사의 내진성능평가를 위한 원심모형 진동대 시험)

  • Kim, Jin Ho;Shin, Min Jung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.99-105
    • /
    • 2011
  • When a certain magnitude earthquake occurs, serious damage for human and properties is a major concern for most of the subway stations which were not applied for earthquake resistant design. Consideration and experimental verification for ground and structural behavior based on soil-structure interaction relation are required to evaluate seismic performance of the subway station as embedded structures. For 1/60 scaled subway station model, centrifuge modeling shaking table test is performed using Kobe and Northridge earthquakes. Compare to displacements and moments of the underground and structure obtained by soil response analysis and response displacement method based on experimental results, this paper shows how to evaluate seismic performance of subway station.

Acceleration of the Perception Threshold of Occupants for the Horizontal Vibration of Tall Buildings (고층 건축물의 수평진동에 대한 사용자의 지각임계가속도)

  • Cho, Kang-Pyo;Shin, Sung-Woo;Jeong, Seung-Hwan;Cho, Soo-Youn
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.371-377
    • /
    • 2007
  • In this paper, acceleration threshold of perception for the horizontal vibration of tall buildings was estimated. Excessive vibration of tall buildings by wind can give displeasure, such as giddiness and visual insecurity. To provide comfortable environment to residents of tall buildings, acceleration needs to be limited. For tall buildings the first mode of vibration is dominant. To reproduce the first mode of vibration, experiments were performed by generating sine waves by a shaking table. A nitration house was made and forty persons were employed for experiments. The forty persons were organized into five experimental groups, each of which was composed of eight persons, and the threshold of perception for horizontal vibration was measured by increasing acceleration in the range of 0.2Hz through 1.2Hz of frequency, Performance curves were obtained by dividing the distribution of perception for horizontal vibration into the range of $0{\sim}20%,\;21{\sim}40%,\;41{\sim}60%,\;61{\sim}80%\;and\;81{\sim}100%$ and by fitting curves.

Modal Identification and Seismic Performance Evaluation of 154kV Transformer Porcelain Bushing by Vibration Test (진동시험에 의한 154kV 변압기 부싱의 동특성 분석 및 내진성능 평가)

  • Joe, Yang-Hee;Cho, Sung-Gook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.5 s.51
    • /
    • pp.107-115
    • /
    • 2006
  • The power supply system is one of the most important infrafacilities which should maintain their inherent function during and after earthquakes. This study was performed to analyze dynamic characteristics and seismic performance of Korean typical 154kV transformer porcelain bushing. For the purpose of this study, actual 154kV porcelain bushings were selected and tested on the shaking table. The vibration tests consist of modal identification tests, seismic performance tests, and fragility tests. The sine sweep waves, artificial earthquake waves, and continuous resonant sine waves were used as shaking table motions. This paper describes the test specimens, shaking facilities, and test methods. Natural frequencies and damping ratios of the bushing have been evaluated from the experimental data. The failure mode and the performance level of the Korean transformer bushing have been first identified in this study.