DOI QR코드

DOI QR Code

Seismic Performance Evaluation of Concrete Anchors used in Power Plant Equipment by Shaking Table Tests

진동대 실험을 통한 발전기기용 콘크리트 앵커의 성능평가

  • 이상문 (강릉원주대학교 토목공학과) ;
  • 전법규 (부산대학교 지진 방재 센터) ;
  • 정우영 (강릉원주대학교 토목공학과)
  • Received : 2020.09.22
  • Accepted : 2020.11.10
  • Published : 2021.02.01

Abstract

The main purpose of this study is to assess the safety of the fixed anchorages subjected to the seismic motion for an operating facilities in the actual power plant. Thus, the experimental study was conducted to investigate the load response in the event of an actual seismic to the anchorages of a nonstructural components. Since there are economic and spatial constraints to study nonstructural components that actually have various forms, alternative test specimens of steel frames with mass were built and the shaking table test was carried out. In order to evaluate the dynamic characteristics and seismic performance, the natural frequency of the target structure was identified through the shaking table test and then the load response characteristics of the anchorage were evaluated by generating an artificial seismic effect like actual seismic. Finally, the structural stiffness was reinforced by fixing the steel frame to the test specimen using bolts, thereby reducing the load transmitted to the anchorage. It will be carried out on the reliability verification of the experiments and areas that have not been carried out due to the site conditions through the analytical approach in the future.

본 연구는 실제 발전소 내 운영 설비의 고정부에 사용되는 앵커에 대하여 지진 발생 시 안전성을 평가하는 것이 주된 목적이다. 이에 따라 운영 설비와 같은 비 구조적 구성 요소의 고정부 앵커에 실제 지진이 발생하였을 경우 발생되는 하중에 대한 응답을 조사하기 위해 실험적 연구를 수행하였다. 실제 다양한 형태를 갖는 비구조요소를 연구하는 데는 경제적, 공간적 제약이 있기 때문에 프레임과 질량으로 구성된 대체 시험체를 제작하여 진동대 시험을 수행하였다. 고정부 콘크리트 앵커의 동적 특성과 내진성능을 평가하기 위해 진동대 시험을 통해 대상 구조물의 고유 진동수를 파악한 후 실제 지진과 같은 인공 지진 효과를 발생시켜 실험을 수행하였다. 결론적으로 시험체에 볼트를 이용하여 강철 프레임을 고정시켜 구조적 강성을 확보하였으며, 이에 따라 고정부 앵커에 전달되는 하중이 감소되는 것을 확인하였다. 향후 해석적 접근을 통하여 실험에 대한 신뢰성 검증 및 현장 여건 상 수행되지 못한 부분에 대하여 연구를 수행할 예정이다.

Keywords

References

  1. Ban, W. H. (2020). Seismic performance evaluation of recentering braced frame structures using superelastic shape memory alloys, M.Sc. Thesis, Incheon National University (in Korean).
  2. Ban, W. H. and Hu, J. W. (2020). "Seismic performance evaluation of recentering braced frame structures using superelastic shape memory alloys: Nonlinear static analysis." Journal of Korean Society for Advanced Composite Structures, KOSACS, Vol. 11, No. 2, pp. 7-14 (in Korean). https://doi.org/10.11004/kosacs.2020.11.2.007
  3. Cho, S. G., Kim, D. K. and Go, S. H. (2010). "Effects of the excitation level on the dynamic characteristics of electrical cabinets of nuclear power plants." Journal of the Earthquake Engineering Society of Korea, EESK, Vol. 14, No. 3, pp. 23-30 (in Korean). https://doi.org/10.5000/EESK.2010.14.3.023
  4. Cosenza, E., Di Sarno, L., Maddaloni, G., Magliulo, G., Petrone, C. and Prota, A. (2015). "Shake table tests for the seismic fragility evaluation of hospital rooms." Earthquake Engineering & Structural Dynamics, Vol. 44, No. 1, pp. 23-40, DOI: 10.1002/eqe.2456.
  5. Eem, S. H., Jeon, B. G., Jang, S. J. and Choi, I. K. (2019). "Evaluate the characteristics of vibration caused by rocking modes of electric cabinet under seismic loading." Korean Society for Noise and Vibration Engineering, KSNVE, Vol. 29, No. 6, pp. 735-744 (in Korean). https://doi.org/10.5050/KSNVE.2019.29.6.735
  6. International Code Council Evaluation Service (ICC-ES) (2016). Acceptance criteria for seismic certification by shake table testing of nonstructural components, AC 156.
  7. International Electrotechnical Commission (IEC) (1991). Environmental testing-Part 3-3: Guidance-Seismic test methods for equipments, IEC 60068-3-3.
  8. Jeon, B. G., Yun, D. W., Shin, Y. J. and Jung, W. Y. (2019). "Seismic performance evaluation for hydroelectric power plants RTU panel by shaking table tests." Korean Society for Noise and Vibration Engineering, KSNVE, Vol. 29, No. 6, pp. 770-779 (in Korean). https://doi.org/10.5050/KSNVE.2019.29.6.770
  9. Lee, S. M. and Jung, W. Y. (2020). "Evaluation of anchorage performance of the switchboard cabinet under seismic loading condition." Advances in Mechanical Engineering, Vol. 12, No. 5, pp. 1-12.
  10. Ministry of Land, Infrastructure and Transport (MOLIT) (2016). Korean building code-structural (in Korean).
  11. Ministry of the Interior and Safety (MOIS) (2017). Pohang earthquake white paper (in Korean).
  12. Moon, J. Y., Kwon, M. H., Kim, J. S. and Lim, J. H. (2018). "Seismic fragility evaluation of cabinet panel by nonlinear time history analysis." Journal of the Korea Academia-Industrial cooperation Society, KAIS, Vol. 19, No. 2, pp. 50-55 (in Korean). https://doi.org/10.5762/KAIS.2018.19.2.50
  13. Oh, S. H., Park, H. Y. and Choi, K. K. (2018). "Seismic damage status and characteristics of non-structural elements." Korean Society for Noise and Vibration Engineering, KSNVE, Vol. 28, No. 2, pp. 71-77 (in Korean).
  14. Yang, J., Rustogi, S. K. and Gupta, A. (2003). "Rocking stiffness of mounting arrangements in electrical cabinets and control panels." Nuclear Engineering and Design, Vol. 219, No. 2, pp. 127-141. https://doi.org/10.1016/S0029-5493(02)00279-0
  15. Yun, D. W., Jeon, B. G., Jung, W. Y., Chang, S. J. and Shin, Y. J. (2019). "Analysis of anchorage behavior characteristics of the electrical cabinet using shaking table tests." Transactions of the Korean Society for Noise and Vibration Engineering, KSNVE, Vol. 29, No. 1, pp. 43-50 (in Korean). https://doi.org/10.5050/KSNVE.2019.29.1.043