• 제목/요약/키워드: 진동궤적

검색결과 108건 처리시간 0.022초

Acceleration of Learning speed Neural Networks by Reducing Weight Oscillations (가중치 진동의 감소를 이용한 신경회로망의 학습속도 향상)

  • 임빈철;박동조
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
    • /
    • pp.251-254
    • /
    • 1998
  • 본 논문에서는 신경회로망의 수렴속도를 높이기 위한 알고리즘을 제안한다. 전형적인 역전파 학습방식은 느린 수렴속도가 단점으로 제기되는데 이는 비용함수의 계곡부근에서 가중치의 궤적이 심한 진동현상을 보이기 때문이다. 이 문제를 해결하기 위해서 본 논문에서는 경사법에서 사용되는 갱신방향을 계곡의 진행방향을 이용하여 변경한다. 모의실험을 통하여 제안된 방법으로 가중치의 궤적에 나타나는 진동을 줄이고 수렴속도를 향상시킬 수 있음을 보인다.

  • PDF

Generation of Walking Trajectory of Humanoid Robot using CPG (CPG를 이용한 휴머노이드 로봇 Nao의 보행궤적 생성)

  • Lee, Jaemin;Seo, Kisung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • 제23권4호
    • /
    • pp.360-365
    • /
    • 2013
  • The paper introduces dynamic generation technique of foot trajectories using CPG(Central Pattern Generator). In this approach, the generated foot trajectories can be changeable according to variable outputs of CPG in various environments, because they are given as mapping functions of the output signals of the CPG oscillators. It enables to provide an adaptable foot trajectory for environmental change. To demonstrate the effectiveness of the proposed approach, experiments on humanoid robot Nao is executed in the Webot simulation. The performance and motion features of CPG based approach is analyzed.

Straight-line Path Error Reduction for the End of a Flexible Beam Deploying from a Rotating Rigid Hub (회전하는 강체허브에서 전개하는 보 끝단의 직선궤적오차 저감)

  • Kim, Byeongjin;Kim, Hyungrae;Chung, Jintai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • 제24권11호
    • /
    • pp.898-906
    • /
    • 2014
  • This paper presents a reduction method for a straight-line path error of a flexible beam deploying from a rotating rigid hub. Previous studies discussed about only vibration phenomena of flexible beams deploying from rotating hubs; however, this study investigates a vibration reduction of a rotating beam with variable length. The equation of motion and associated boundary conditions are derived for a flexible beam deploying from a rotating rigid hub, and then they are transformed to a variational equation. By applying the Galerkin method, the discretized equations are obtained from the variational equation. Based on the discretized equations, the dynamic responses of a rotating/deploying beam are analyzed when the beam end has a straight line motion. A reduction method for the trajectory error is proposed, using the average length of a rotating/deploying beam. It is shown that the proposed method is able to reduce the residual vibration of a rotating/deploying beam.

Compensating the Elliptical Trajectory of Elliptical Vibration Cutting Device (타원궤적 진동절삭기의 타원궤적 보정)

  • Loh, Byoung-Gook;Kim, Gi-Dae
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제28권7호
    • /
    • pp.789-795
    • /
    • 2011
  • In elliptical vibration cutting (EVC), cutting performance is largely affected by the shape of an elliptical path of the cutting tool. In this study, two parallel piezoelectric actuators were used to make an elliptical vibration cutting device. When harmonic voltages of $90^{\circ}$ out-of-phase are supplied to the EVC device, creation of an ideal elliptical trajectory whose major and minor axes are parallel to the cutting and thrust directions is anticipated from a kinematic analysis of the EVC device, however, the paths we experimentally observed showed significant distortions in its shape ranging from skew to excessive elongation of the major axis of the ellipse. To compensate distortions, an analytical model describing the elliptical path of the cutting tool was developed and verified with experimental results, and based on the analytical model, the distorted elliptical paths created at 100 Hz, 1 kHz, and 16 kHz were corrected for skew and elongation.

A Study on Position Control of 2-Mass Resonant System Using Iterative Learning Control (반복 학습 제어를 이용한 2관성 공진계의 위치 제어에 관한 연구)

  • Lee, Hak-Sung;Moon, Seung-Bin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • 제14권6호
    • /
    • pp.693-698
    • /
    • 2004
  • In this paper, an iterative learning control method is applied to suppress a vibration of a 2-mass system which has a flexible coupling between a load and a motor. More specifically, conditions for the load speed without vibration are derived based on the steady-state condition. And the desired motor position trajectory is synthesized based on the relation between the load and motor speed. Finally, a PD-type iterative learning control law is applied for the desired motor position trajectory. Since the learning law applied for the desired trajectory guarantees the perfect tracking performance, the resulting load speed shows no vibration even when there exist model uncertainties. A modification to the learning law is also Presented to suppress undesired effects of an initial position error, The simulation results show the effectiveness of the proposed learning method.

Micro Ultrasonic Elliptical Vibration Cutting (II) Ultrasonic Micro V-grooving Using Elliptical Vibration Cutting (미세 초음파 타원궤적 진동절삭 (II) 타원진동 절삭운동을 이용한 미세 홈 초음파 가공)

  • Kim Gi Dae;Loh Byoung-Gook;Hwang Kyung-Sig
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제22권12호
    • /
    • pp.198-204
    • /
    • 2005
  • For precise micro V-grooving, ultrasonic elliptical vibration cutting (UEVC) is proposed using two parallel piezoelectric actuators, which are energized by sinusoidal voltages with a phase difference of 90 degrees. Experimental setup is composed of stacked PZT actuators, a single crystal diamond cutting tool, and a precision motorized xyz stage. It is found that the chip formed in the process of UEVC is discontinuous because of the periodic contacts and non-contacts occurring between the tool and workpiece. It is experimentally observed that the cutting force in the process of UEVC significantly reduces compared to the ordinary non-vibration cutting. In addition, the creation of burr during UEVC is significantly suppressed, which is attributable to the decrease in the specific cutting energy.

Vibration analysis of a misaliagned rotor system supported by ball bearings (축어긋남이 있는 볼베어링 지지 회전체의 진동해석)

  • 이영섭;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.247-252
    • /
    • 1997
  • 축어긋남이 있는 회전체-볼베어링계의 진동을 묘사할 수 있는 모델을 개발하였다. 이 모델은 축어긋남의 효과로서 커플링과 베어링에 작용하는 힘과 모멘트, 그리고 이에 의한 변형을 고려하였으며, 실험과 수치해석 결과로부터 모델의 타당성을 검증하였다. 그 결과는 각축어긋남이 심해짐에 따라 타원 형태의 선회궤적을 보여주며, 어긋남방향의 회전체 고유진동수와 베어링 강성계수가 크게 증가하는 것으로 나타났다. 그리고 이러한 현상은 어긋남 방향의 베어링 모멘트 강성증가에 의한 것으로 밝혀졌다.

  • PDF

Micro Ultrasonic Elliptical Vibration Cutting (I) The Generation of a Elliptical Vibration Cutting Motion for Micro Ultrasonic Machining (미세 초음파 타원궤적 진동절삭 (I) 미세 초음파 가공을 위한 타원 절삭경로 생성)

  • Loh Byung-Gook;Kim Gi Dae
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제22권12호
    • /
    • pp.190-197
    • /
    • 2005
  • For precise micro-grooving and surface machining, a mechanism for creating elliptical vibration cutting (EVC) motion is proposed which uses two parallel piezoelectric actuators. And based on its kinematical analysis, variations of EVC path are investigated as a function of dimensional changes in the mechanism, phase difference and amplitude of excitation sinusoidal voltages. Using the proposed PZT mechanism, various types of two dimensional EVC paths including one dimensional vibration cutting path along the cutting direction and thrust direction can be easily obtained by changing the phase lag, the amplitude of the piezoelectric actuators, and the dimension of the mechanism.

Machining of Micro Structure using Elliptical Vibration Grooving Machine (타원궤적 진동절삭 가공기를 이용한 미세 형상 가공)

  • Kim, Gi-Dae;Loh, Byoung-Gook
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제25권11호
    • /
    • pp.45-51
    • /
    • 2008
  • Successive micro-scale V-grooves and a grid of pyramids were machined by elliptical vibration tufting (EVC) to investigate feasibility of using EVC as an alternative method of creating micro-molds to photo-lithography and electroforming, which have been commonly employed. An elliptical vibration grooving machine was developed which consists of two orthogonally-arranged piezoelectric actuators, a diamond cutting tool, and a motorized xyz stage. The micro-scale features were machined on materials of copper, duralumin, nickel, and hastelloy and it was found that EVC significantly reduces cutting resistance and prohibits generation of side burrs and rollover burrs, thus resulting in improving machining qualify of micro-molds in ail experimented workpiece materials.