• Title/Summary/Keyword: 직접 전단 시험

Search Result 276, Processing Time 0.04 seconds

Effect of Shear Rate on Strength of Non-cemented and Cemented Sand in Laboratory Testing (실내시험 시 재하속도가 미고결 및 고결 모래의 강도에 미치는 영향)

  • Moon, Hong Duk;Kim, Jeong Suk;Woo, Seung-Wook;Tran, Dong-Kiem-Lam;Park, Sung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.11
    • /
    • pp.23-36
    • /
    • 2021
  • In this paper, the effect of shear rate on internal friction angle and unconfined compressive strength of non-cemented and cemented sand was investigated. A dry Jumunjin sand was prepared at loose, medium, and dense conditions with a relative density of 40, 60 and 80%. Then, series of direct shear tests were conducted at shear rates of 0.32, 0.64, and 2.54 mm/min. In addition, a cemented sand with cement ratio of 8% and 12% was compacted into a cylindrical specimen with 50 mm in diameter and 100 mm in height. Unconfined compression tests on the cemented sand were performed with various shear rates such as 0.1, 0.5, 1, 5 and 10%/min. Regardless of a degree of cementation, the unconfined compressive strength of the cemented sand and the angle of internal friction of the non-cemented sand tended to increase as the shear rate increased. For the non-cemented sand, the angle of internal friction increased by 4° at maximum as the shear rate increased. The unconfined compressive strength of the cemented sand also increased as the shear rate increased. However, its increasing pattern declined after the standard shear rate (1 mm/min). A discrete element method was also used to analyze the crack initiation and its development for the cemented sand with shear rate. Numerical results of unconfined compressive strength and failure pattern were similar to the experimental results.

Automatic Parameter Estimation of Hydrogeologic Field Test around Underground Storage Caverns by using Nonlinear Regression Model (비선형 회귀모형을 이용한 지하저장공동 주변 현장수리지질시험 매개변수의 자동 추정)

  • Chung, Il-Moon;Cho, Won-Cheol;Kim, Nam-Won
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.359-369
    • /
    • 2008
  • For the design and effective management of underground storage caverns, preliminary investigation on the hydrogeologic parameters around caverns and analysis on the groundwater flow must be carried out. The data collection is very imporatnat task for the hydrogeologic design so various hydraulic tests have been performed. When analyzing the injection/fall off test data, existing graphical method to estimate the parameters in Theis' equation is widely used. However this method has some sources of error when estimating parameters by means of human faults. Therefore the method of estimating parameters by means of statistical methods such as regression type is evaluated as a useful tool. In this study, nonlinear regression analysis for the Theis' equation is suggested and applied to the estimation of parameters for the real field interference data around underground storage caverns. Damping parameter which reduce the iteration numbers and inhance the convergence is also introduced.

Experimental Study on Development for Separation and Reinforcement Geotextiles with Horizontal Wicking Drain Property (수평방향의 위킹 배수 특성을 지닌 분리·보강용 지오텍스타일 개발을 위한 실험적 연구)

  • Kim, Hong-Kwan;Ahn, Min-Soo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.215-224
    • /
    • 2019
  • According to the recent civil engineering construction work site which is a complex process, development of multi-functional geotextiles is required. In this study, the characteristics of five different modified cross-section fiber yarns for the selection of wicking yarns were analyzed and yarns that can achieve target properties were selected. Experimental prototype geotextiles suitable for horizontal wicking drain property and reinforcement was developed and its tensile strength, 2% secant modulus, vertical water permeability, AOS, friction characteristics by the direct shear method, and vertical/horizontal wicking test were analyzed. These tests are conducted to verify the performance of the geotextiles with horizontal wick drain property, separation and reinforcement developed in this study. As a results of the indoor soil box test, it was confirmed that the geotextiles using the wicking yarn sufficiently exhibited the function of discharging excess pore water in the horizontal direction.

Reinforcing Effect and Behaviors of Root-Pile in Heavy-Duty Direct Shear Test (대형직접전단시험에 의한 뿌리말뚝의 거동 및 보강효과)

  • Han, Jung-Geun;Jang, Sin-Nam
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.3
    • /
    • pp.23-30
    • /
    • 2002
  • In recently, using of steel reinforcements by reinforcing materials of the reinforced earth, micro-pile and root-pile etc,. is wide-spreading in the stabilizing control of cutting and embankment slopes, but the failure mechanism of reinforced earth as well as the effect of insert angles or types of reinforcement and others are not defined clearly. In this study, therefore heavy-duty direct shear tests were exercised on the reinforced soil and the non-reinforced soil, which was executed for research on the interaction of soil-reinforcement and theirs behavior. The hardness and softness and the standard sands were used for modeling of reinforced soil, the material constants for the computer simulation were estimated from the results of CD-Test. The effects of reinforcing and of friction increasing on the softness, area ratio of reinforcements is equal, were the better than them of the hardness, as well the reinforcing effects of shear strength without regard to the area ratio is much the same at $10^{\circ}$, insert angle of reinforced bar, differ from them of the existing study. Then, the results of numerical analysis showed that the behavior of reinforcements displayed bending resistance and shear resistance at $15^{\circ}$ and $30^{\circ}$, respectively. Also, the state of strain transfer was observed and the behavior of resistance mechanism on reinforcements presented almost the same them of landslides stabilizing pile.

Numerical Simulation of Dynamic Soil-pile-structure Interaction in Liquefiable Sand (액상화 가능한 지반에 근입된 지반-말뚝-구조물 동적 상호작용의 수치 모델링)

  • Kwon, Sun-Yong;Yoo, Min-Taek;Kim, Seok-Jung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.7
    • /
    • pp.29-38
    • /
    • 2018
  • Three-dimensional continuum modeling of dynamic soil-pile-structure interaction embedded in a liquefiable sand was carried out. Finn model which can model liquefaction behavior using effective stress method was adopted to simulate development of pore water pressure according to shear deformation of soil directly in real time. Finn model was incorporated into Non-linear elastic, Mohr-Coulomb plastic model. Calibration of proposed modeling method was performed by comparing the results with those of the centrifuge tests performed by Wilson (1998). Excess pore pressure ratio, pile bending moment, pile head displacement-time history according to depth calculated by numerical analysis agreed reasonably well with the test results. Validation of the proposed modeling method was later performed using another test case, and good agreement between the computed and measured values was observed.

Effects of Reinforced Pseudo-Plastic Backfill on the Behavior of Ground around Cavity Developed due to Sewer Leakage (하수관 누수에 의해 발생되는 공동 주변 지반의 거동에 대한 가소성유동화토의 보강효과)

  • Oh, Dongwook;Kong, Sukmin;Lee, Daeyoung;Yoo, Yongseon;Lee, Yongjoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.12
    • /
    • pp.13-22
    • /
    • 2015
  • Developed ground cavity due to leakage of decrepit old sewer pipe causes ground surface settlement and brittle fracture of pavement. Recently, for 5 years, frequency of occurrence of ground subsidence phenomenon tends to increase rapidly and/or steadily. It is difficult to investigate ground surface settlement and/or subsidence in urban area because most ground surfaces are covered with asphalt or concrete pavement. In this research, therefore, ground surface settlement, influence zone and settlement of sewer pipe were analyzed using finite element method. Not only reinforced effect of pseudo-plastic backfill that is applied to prevent ground surface settlement or subsidence spot, was compared and analyzed using numerical analysis program, but also direct shear test was carried out to determine strength parameters of pseudo-plastic backfill.

A Study on the Engineering Characteristic of scoria in Jeju-Do (제주도산 송이의 공학적 특성에 관한 연구)

  • Chun, Byung-Sik;Kim, Dong-Hoon;Kim, Young-Hun;Lee, Dong-Yeup
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1630-1637
    • /
    • 2008
  • Jeju-do is a island formed by the volcanic activity and has more than 360 volcanic cones distributed widely along the long axis of the elliptically shaped island. The volcanic cones consist mainly of scoria, so called "Song-I" in the local dialect. In this study the chemical and soil mechanical properties of scoria being very different from those of the inland were investigated with the various tests. In the sieve-passing test the particle size of scoria had more than 10 of uniformity coefficient and gradation coefficient of 1 ~ 3, showing relatively homogenous distribution. Based on the uniformity classification, scoria was assorted into GW. In the large scale direct shear tested for measuring the mechanical strength of scoria the internal friction angle of red scoria was $37^{\circ}$ and that of black scoria was $36^{\circ}$. This indicated that there was no difference in the mechanical strength between two types of scoria. On the other hand, red and black scoria had $1.24{\times}10^{-3}$ to $3.55{\times}10^{-2}$ cm/sec of k values for the static water level permeability, thus being classified into a coarse or fine sand as compared with that representing the saturated soil. They also had 1.411 to $1.477\;g/cm^3$ of notably low $r_{dmax}$ values for the compaction test as compared with common soil, which was considered to be due to their low specific gravity and high porosity. In conclusion, the soil mechanic properties of scoria obtained from this study are thought to be very helpful for reducing lots of trial and error happening in the civil engineering construction.

  • PDF

Stability Analysis for Jointed Rock Slope Using Ubiquitous Joint Model (편재절리모델을 이용한 절리 암반 사면의 안정성 해석)

  • 박연준;유광호
    • Tunnel and Underground Space
    • /
    • v.8 no.4
    • /
    • pp.287-295
    • /
    • 1998
  • Limit equilibrium method is widely used for the stability analysis of soil slopes. In jointed rock slopes however, the failure of the slope is largely dependent upon the strength and deformability of the joints in the rock mass and quite often failure occurs along the joints. This paper describes the use of ubiquitous joint model for the stability analysis of the jointed rock slopes. This model is essentially an anisotropic elasto-plastic model and can simulate two sets of joint in arbitrary orientations. Validation of the developed with the factor of safety equal to unity was selected when the shape of the failure plane is assumed log spiral. Then the factor of safety of the rock slope having two perpendicular joint sets was calculated while rotating joint orientations. Rusults were compared with limit equilibrium solutions on soil slopes having equivalent soil properties when plane sliding was assumed. Developed model predicted the factor of safety of jointed rock slope in a reasonable accuracy when joint spacing is sufficiently small.

  • PDF

Effect of Non-Plastic Fines Content on the Pore Pressure Generation of Sand-Silt Mixture Under Strain-Controlled CDSS Test (변형률 제어 반복직접단순전단시험에서 세립분이 모래-실트 혼합토의 간극수압에 미치는 영향)

  • Tran, Dong-Kiem-Lam;Park, Sung-Sik;Nguyen, Tan-No;Park, Jae-Hyun;Sung, Hee-Young;Son, Jun-Hyeok;Hwang, Keum-Bee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.33-39
    • /
    • 2024
  • Understanding the behavior of soil under cyclic loading conditions is essential for assessing its response to seismic events and potential liquefaction. This study investigates the effect of non-plastic fines content (FC) on excess pore pressure generation in medium-density sand-silt mixtures subjected to strain-controlled cyclic direct simple shear (CDSS) tests. The investigation is conducted by analyzing excess pore pressure (EPP) ratios and the number of cycles to liquefaction (Ncyc-liq) under varying shear strain levels and FC values. The study uses Jumunjin sand and silica silt with FC values ranging from 0% to 40% and shear strain levels of 0.1%, 0.2%, 0.5%, and 1.0%. The findings indicate that the EPP ratio increases rapidly during loading cycles, with higher shear strain levels generating more EPP and requiring fewer cycles to reach liquefaction. At 1.0% and 0.5% shear strain levels, FC has a limited effect on Ncyc-liq. However, at a lower shear strain level of 0.2%, increasing FC from 0 to 10% reduces Ncyc-liq from 42 to 27, and as FC increases further, Ncyc-liq also increases. In summary, this study provides valuable insights into the behavior of soil under cyclic loading conditions. It highlights the significance of shear strain levels and FC values in excess pore pressure generation and liquefaction susceptibility.

Evaluating Course of Pediatric Dentistry on Correlation Analysis between Dental Students' Achievements of Subjects and OSCE (임상술기능력평가와 교과목간의 학업성취도 분석을 통한 소아치과학의 교육과정 평가)

  • Bang, Jaebeum;Rim, Jaeyoung;Park, Jaehong
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.40 no.4
    • /
    • pp.253-259
    • /
    • 2013
  • This study aimed to evaluate the courses of pediatric dentistry based on correlation analysis between scores of objective structured clinical examination (OSCE) and related subjects for 79 fourth-year students. The score of theory were related to preclinical (r = 0.449, p = 0.000) and clerkship (r = 0.437, p = 0.000) each, but the scores of clerkship were not related to OSCE. To make the students skillful for clerkship, more professor's firsthand teaching on treating patients and adequate numbers of clinical professors are required. Patients who come to the university dental hospital prefer to be treated by professors rather than students. In these circumstances, educational conditions should be arranged by ensuring the number of professors for teaching students to improve their clinical competence through direct instruction and feedback to students. In addition, pragmatic improvement plans, which allow continuous education and evaluation about basic techniques to be examined in the clinical practice course, should be compromised with the more concrete evaluation of the curriculum in order to evaluate theoretical knowledge and technical trainings to be well exercised and deepened in the practical clinical field.