• Title/Summary/Keyword: 직접 수치모사

Search Result 151, Processing Time 0.026 seconds

Application on Pile Under Lateral Load in Multi Layered Ground Using the Strain Wedge Model (변형률 쐐기모델을 이용한 다층지반에서의 횡하중을 받는 말뚝의 적용성 평가)

  • Kim, Hongtaek;Lee, Jungjae;Chung, Jongmin;Yoon, Changjin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.7
    • /
    • pp.159-165
    • /
    • 2009
  • The Strain Wedge Model is useful method for horizontal bearing capacity calculation considering interaction of pile and ground deformation. However, application case of the Strain Wedge Model is rare and the strain wedge model of plenty of verification is needed on multi layered ground in Korea. In this present study, to conduct laboratory model test and numerical analysis for verification of Strain Wedge Model, adapt model that could describe the interaction of pile and ground deformation on multi layered ground. In model test, it was performed to estimate the behavior characteristics on pile under lateral load and to analyze the relationship between load and deformation. In addition, it was fulfilled to measure the skin friction on pile using strain gauge and to decide the ground passive resistance wedge using skin friction. Numerical analysis was performed to verify laboratory model test results.

  • PDF

Development of Multiple Production $\varepsilon$ Equation Model in Low Reynolds Number $\kappa$-$\varepsilon$ Model with the Aid of DNS Data (저 레이놀즈수 $\kappa$-$\varepsilon$psilon.모형에서 DNS 자료에 의한 $\varepsilon$방정식의 다중 생성률 모형 개발)

  • Sin, Jong-Geun;Choe, Yeong-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.1
    • /
    • pp.304-320
    • /
    • 1996
  • A multiple production .epsilon. equation model was developed in the low Reynolds number $\kappa$-$\varepsilon$ model with the aids of DNS data. We derived the model theoretically and avoided the use of empirical correlations as much as possible in order for the model to have generality in the prediction of complex turbulent flow. Unavoidable model constants were, however, optimized with the aids of DNS data. All the production and dissipation models in the $\varepsilon$ equation were modified with damping functions to satisfy the wall limiting behavior. A new $f_{\mu}$ function, turbulent diffusion and pressure diffusion model for the k and .epsilon. equations were also proposed to satisfy the wall limiting behavior. By, computational investigation on the plane channel flows, we found that the multiple production model for .epsilon. equation could improve the near wall turbulence behavior compared with the standard production model without the complicated empirical modification. Satisfication of the wall limiting conditions for each turbulence model term was found to be most important for the accurate prediction of near wall turbulence behaviors.

Construction Stage Analysis of Cable-Stayed Bridges Using the Unstrained Element Length Method (무응력길이법을 이용한 사장교의 시공단계 해석)

  • Park, Se Woong;Jung, Myung Rag;Min, Dong Ju;Kim, Moon Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.991-998
    • /
    • 2016
  • The propose of this study is to demonstrate how efficiently and accurately the construction stages of cable-stayed bridges are analyzed using the unstrained length method (ULM) in which all unstrained element lengths are determined from a simplified analytical method (Jung et al., 2015). A forward analysis of cable-stayed bridges using the commercial FEA program, MIDAS is sequentially carried out considering the lack of fit force but the ULM is able to analyze a intermediate construction stage directly by taking the corresponding unstrained lengths of the construction stage model simply. The closing load step analysis is achieved by loading the pavement and counter weight forces in reverse. An Incheon bridge model is analyzed using the present ULM and the commercial program, respectively, and the two analysis results are compared.

Assessment of Turbulent Spectral Estimators in LDV (LDV의 난류 스펙트럼 추정치 평가)

  • 이도환;성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1788-1795
    • /
    • 1992
  • Numerical simulations have been performed to investigate various spectral estimators used in LDV signal processing. In order to simulate a particle arrival time statistics known as the doubly stochastic poisson process, an autoregressive vector model was adopted to construct a primary velocity field. The conditional Poisson process with a random rate parameter was generated through the rescaling time process using the mean value function. The direct transform based on random sampling sequences and the standard periodogram using periodically resampled data by the sample and hold interpolation were applied to obtain power spectral density functions. For low turbulent intensity flows, the direct transform with a constant Poisson intensity is in good agreement with the theoretical spectrum. The periodogram using the sample and hold sequences is better than the direct transform in the view of the stability and the weighting of the velocity bias for high data density flows. The high Reynolds stress and high fluctuation of the transverse velocity component affects the velocity bias which increases the distortion of spectral components in the direct transform.

Modeling Direct Shear Test of Crushed Stone Using DEM (개별요소법을 이용한 쇄석재료의 직접전단시험 모델링)

  • Cho, Nam-Kak;Yoo, Chung-Sik;Lee, Dae-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.1
    • /
    • pp.15-23
    • /
    • 2008
  • In this study, modeling shear characteristics of a coarse material mainly containing crushed stones were implemented using PFC2D, a commercially available code based on DEM(Discrete Element Method). Using the DEM code, this study provides the methodology considering the shear characteristics due to a irregular grain shape, GSD(Grain Size Distribution) and porosity of coarse material which are not effectively incorporated in conventional continuum numerical codes. Direct shear test was simulated for the GSD and porosity generated sample using the code and the simulated results showed very good agreement with the laboratory test results. The current modeling approach can be applied to other coarse materials having various GSD and porosities. Using such application, prediction of the strength characteristics of coarse material in field scale would be possible, which is limited in laboratory scale so far.

Numerical Test for the 2D Q Tomography Inversion Based on the Stochastic Ground-motion Model (추계학적 지진동모델에 기반한 2D Q 토모그래피 수치모델 역산)

  • Yun, Kwan-Hee;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.3
    • /
    • pp.191-202
    • /
    • 2007
  • To identify the detailed attenuation structure in the southern Korean Peninsula, a numerical test was conducted for the Q tomography inversion to be applied to the accumulated dataset until 2005. In particular, the stochastic pointsource ground-motion model (STGM model; Boore, 2003) was adopted for the 2D Q tomography inversion for direct application to simulating the strong ground-motion. Simultaneous inversion of the STGM model parameters with a regional single Q model was performed to evaluate the source and site effects which were necessary to generate an artificial dataset for the numerical test. The artificial dataset consists of simulated Fourier spectra that resemble the real data in the magnitude-distance-frequency-error distribution except replacement of the regional single Q model with a checkerboard type of high and low values of laterally varying Q models. The total number of Q blocks used for the checkerboard test was 75 (grid size of $35{\times}44km^2$ for Q blocks); Q functional form of $Q_0f^{\eta}$ ($Q_0$=100 or 500, 0.0 < ${\eta}$ < 1.0) was assigned to each Q block for the checkerboard test. The checkerboard test has been implemented in three steps. At the first step, the initial values of Q-values for 75 blocks were estimated. At the second step, the site amplification function was estimated by using the initial guess of A(f) which is the mean site amplification functions (Yun and Suh, 2007) for the site class. The last step is to invert the tomographic Q-values of 75 blocks based on the results of the first and second steps. As a result of the checkerboard test, it was demonstrated that Q-values could be robustly estimated by using the 2D Q tomography inversion method even in the presence of perturbed source and site effects from the true input model.

Exhaust Plume Behavior Study of MMH-NTO Bipropellant Thruster (MMH-NTO 이원추진제 추력기의 배기가스 거동 해석 연구)

  • Kim, Hyeonah;Lee, Kyun Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.4
    • /
    • pp.300-309
    • /
    • 2017
  • A spacecraft obtains a reaction momentum required for an orbit correction and an attitude control by exhausting a combustion gas through a small thruster in space. If the exhaust plume collides with spacecraft surfaces, it is very important to predict the exhaust plume behavior of the thruster when designing a satellite, because a generated disturbance force/torque, a heat load and a surface contamination can yield a life shortening and a reduction of the spacecraft function. The purpose of the present study is to ensure the core technology required for the spacecraft design by analyzing numerically the exhaust gas behavior of the 10 N class bipropellant thruster for an attitude control of the spacecraft. To do this, calculation results of chemical equilibrium reaction between a MMH for fuel and a NTO for oxidizer, and continuum region of the nozzle inside are implemented as inlet conditions of the DSMC method for the exhaust plume analysis. From these results, it is possible to predict a nonequilibrium expansion such as a species separation and a backflow in the vicinity of the bipropellant thruster nozzle.

Design and Array Signal Suggestion of Array Type Pulsed Eddy Current Probe for Health Monitoring of Metal Tubes (금속배관 건전성 감시를 위한 배열형 펄스와전류 탐촉자의 설계 및 배열신호 제안)

  • Shin, Young Kil
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.5
    • /
    • pp.291-298
    • /
    • 2015
  • An array type probe for monitoring metal tubes is proposed in this paper which utilizes peak value and peak time of a pulsed eddy current(PEC) signal. The probe consists of an array of encircling coils along a tube and the outside of coils is shielded by ferrite to prevent source magnetic fields from directly affecting sensor signals since it is the magnetic fields produced by eddy currents that reflect the condition of metal tubes. The positions of both exciter and sensor coils are consecutively moved automatically so that manual scanning is not necessary. At one position of send-receive coils, peak value and peak time are extracted from a sensor PEC signal and these data are accumulated for all positions to form an array type peak value signal and an array type peak time signal. Numerical simulation was performed using the backward difference method in time and the finite element method for spatial analysis. Simulation results showed that peak value increases and the peak appears earlier as the defect depth or length increases. The proposed array signals are shown to be excellent in reflecting the defect location as well as variations of defect depth and length within the array probe.

강지진동 분석의 최적화를 위한 고려요소

  • 이석태;조봉곤;이정모;조영삼
    • Proceedings of the International Union of Geodesy And Geophysics Korea Journal of Geophysical Research Conference
    • /
    • 2003.05a
    • /
    • pp.17-17
    • /
    • 2003
  • 한반도에 있어서의 지진의 영향을 분석하기 위해서는 강지진동 연구가 필수적이다. 강지진동 자료가 부족한 한반도의 특성상 모사를 통해 연구하고 있다. 강지진동 분석을 하기 위해서는 되도록 노이즈가 포함되어 있지 않은 지진파자료를 선택하여 그 지진자료의 스펙트럼 분석을 통해 감쇠상수 k, Q 등을 구한다. 이러한 감쇠상수 값을 통해 한반도의 진동 특성을 이해할 수 있다. 그러나 감쇠상수를 구하는 과정에서 감쇠상수 분석에 사용된 지진자료에 노이즈가 더해졌을 경우, 어떤 형태로 스펙트럼 영역에 영향을 미치고, 감쇠상수에는 어떤 영향을 미치는 지를 연구하여 노이즈효과를 제거할 수 있는 최적화된 분석에 관한 연구가 선행되어야 한다고 본다. 따라서 이번 연구에서는 강지진동 모사프로그램을 가지고 노이즈효과를 적용하면서 감쇠상수에 노이즈가 어떤 영향을 미치는 지에 대한 수치 해석적 연구를 실시하였다. 합성지진파에 이 합성지진파와 전혀 다른 주파수 형태를 보이는 노이즈를 강도를 달리하면서 합성해 본 결과, 노이즈효과를 고려할 수 있는 몇 가지 요소가 있음을 알 수 있었다. 감쇠상수 k값을 강지진동 모사프로그램으로부터 값을 달리하며 합성해 본 결과 노이즈효과를 보이는 것을 알 수 있었으며, 감쇠상수 k를 선형회귀를 통해 $k_{s}$$k_{q}$를 구할 때의 적용 주파수 범위를 변화시켰을 때도 일정한 양상의 노이즈 효과를 보였다. 또 지진자료와 노이즈를 중첩시킨 지진파 시계열 자료의 정부분만을 감쇠상수 k를 구하는 선형회귀에 이용했을 경우에도 노이즈 효과를 보였다. 또한 계산되어 나온 감쇠상수 값으로부터 특정지역의 지반운동의 특성을 이해할 수 있는 스펙트럼 가속도, 최대 가속도, 및 최대속도 값에 따른 감쇠식을 구하였다. 이것을 한반도와 같은 판 내부 환경인 ENA 값과 비교하였으며 기존의 연구와도 비교하였다.심으로부터 지오이드까지의 거리, 지오이드로부터 지표까지의 거리를 정의해주었으며, 각 격자점의 수직구조를 정의하기 위해 깊이에 따른 각 매질의 밀도, P파의 속도, S파의 속도, P파에 대한 Q값, S파에 대한 Q값을 정의 해주었다. S파의 속도를 구하기 위해서 지구 내부 물질을 포아송 매질이라는 가정 하에, 관계식을 $Vp{\;}={\;}SQRT(3){\;}{\times}{\;}Vs$ 이용하였다. 획득한 모델치들을 이용해 동해와 동해 인근 지역에 대한 초기모델을 구축하였다. 약 1 × 10/sup 6/ e/sup -//sec·n㎡ 의 전자선량에 해당되며 이를 기준으로 각각의 illumination angle에 대한 임계전자선량을 평가할 수 있었다. 실질적으로 Cibbsite와 같은 무기수화물의 직접가열실험 시 전자빔 조사에 의해 야기되는 상전이 영향을 배제하고 실험을 수행하려면 illumination angle 0.2mrad (Dose rate : 8000 e/sup -//sec·n㎡)이하로 관찰하고 기록되어야 함을 본 자료로부터 알 수 있었다.운동횟수에 의한 영향으로써 운동시간을 1일 6시간으로 설정하여, 운동횟수를 결정하기 위하여 오전, 오후에 각 3시간씩 운동시키는 방법과 오전부터 6시간동안 운동시키는 두 방법을 이용하여 품질을 비교하였다. 각 조건에 따라 운동시킨 참돔의 수분함량을 나타낸 것으로, 2회(오전 3시간, 오후 3시간)에 나누어서 운동시키기 위한 육의 수분함량은 73.37±2.02%를 나타냈으며, 1회(6시간 운동)운동시키기 위한 육은 71.74±1.66%을 나타내었다. 각각의 운동조건에서 양식된 참돔은 사육초기에는 큰 변화가 없었으나, 사육 5일 이후에는 수분함량이 증가하여 15일에는 76.40±0.14, 75.62±0.98%의 수분함량을 2회와 1회 운동시킨 참돔의 육에서 각각 나타났다. 운동횟수에 따른 지

  • PDF

Fluctuation Features and Numerical Model for Underground Temperature in Shallow Subsurface Soil (천층 토양 내 지중온도 변동 특성과 수치모델 평가)

  • Jeong, Jaehoon;Kim, Gyoobum;Park, Hyoungki;Kim, Hyoungsoo;Kim, Taehyung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.5
    • /
    • pp.35-42
    • /
    • 2015
  • This is conducted to observe underground temperature and to analyze its change affected by climate condition and soil infiltration in the mountainous area, Yesan region, Chungcheong-namdo province. Additionally, underground temperature change is also simulated using air temperature and soil thermal properties with a numerical model. Soil temperature monitoring data acquired from each depth, 20 cm, 50 cm, and 100 cm, indicates that the data within 50 cm in depth shows peak-shaped big fluctuation directly affected by air temperature and it at 100 cm has open-shaped small fluctuation. Underground temperature variation, a difference between high and low values, during monitoring period is weakly proportional to hydraulic conductivity of the sediment and it is assumed that water plays a part in delivering air temperature in soil. The underground temperature estimated by a numerical model is very similar to the observed data with an average value of 0.99 cross-correlation coefficient. From the result of this study, the aquifer unsaturated hydraulic conductivity of the soil and the groundwater recharge is likely to be able to estimate with underground temperature profile calculated using a numerical model.