• Title/Summary/Keyword: 직접식 에너지 적층

Search Result 5, Processing Time 0.025 seconds

Preliminary Study on Improvement of Surface Characteristics of Stellite21 Deposited Layer by Powder Feeding Type of Direct Energy Deposition Process Using Plasma Electron Beam (플라즈마 전자빔을 이용한 분말공급형 직접식 에너지 적층 공정으로 제작된 Stellite21 적층층의 표면 특성 개선에 관한 기초 연구)

  • Kim, Dong-In;Lee, Ho-Jin;Ahn, Dong-Gyu;Kim, Jin-Seok;Kang, Eun Goo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.11
    • /
    • pp.951-959
    • /
    • 2016
  • The aim of this paper is to investigate the improvement of surface characteristics of Stellite21 deposited layer by powder feeding type of direct energy deposition (DED) process using a plasma electron beam. Re-melting experiments of the deposited specimen is performed using a three-dimensional finishing system with a plasma electron beam. The acceleration voltage and the travel speed of the electron beam are chosen as process parameters. The effects of the process parameters on the surface roughness and the hardness of the re-melted region are examined. The formation of the re-melted region is observed using an optical microscope. Results of these experiments revealed that the re-melting process using a plasma electron beam can greatly improve the surface qualities of the Stellite21 deposited layer by the DED process.

A Study on the Method and Application of Shaft Repair using Directed Energy Deposition Process (직접식 에너지 용착 공정을 활용한 축 보수 방법 및 활용 사례 연구)

  • Lee, Yoon Sun;Lee, Min Kyu;Sung, Ji Hyun;Hong, Myeong Pyo;Son, Yong;An, Seouk;Jeong, Oe Cheol;Lee, Ho Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.9
    • /
    • pp.1-10
    • /
    • 2021
  • Recently, the repair and recycling of damaged mechanical parts via metal additive manufacturing processes have been industrial points of interest. This is because the repair and recycling of damaged mechanical parts can reduce energy and resource consumption. The directed energy deposition(DED) process has various advantages such as the possibility of selective deposition, large building space, and a small heat-affected zone. Hence, it is a suitable process for repairing damaged mechanical parts. The shaft is a core component of various mechanical systems. Although there is a high demand for the repair of the shaft, it is difficult to repair with traditional welding processes because of the thermal deformation problem. The objective of this study is to propose a repair procedure for a damaged shaft using the DED process and discuss its applications. Three types of cases, including a small shaft with a damaged surface, a medium-size shaft with a worn bearing joint, and a large shaft with serious damage, were repaired using the proposed procedure. The microstructure and hardness were examined to discuss the characteristics of the repaired component. The efficiency of the repair of the damaged shaft is also discussed.

A Sturdy on the Stack Sleep Twist Round Wind Power System Using Magnetic Levitation Technology (대형 건물 구조에 적합한 자기 부상을 이용한 저 풍속 적층 연곡형 풍력발전 시스템에 관한 연구)

  • Jung, JaChoon;Jang, MiHye
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.186.3-186.3
    • /
    • 2010
  • 본 논문은 우리나라와 같이 평균풍속이 낮고 바람 방향이 수시로 변하는 지역에 적합한 풍력발전 시스템에 관하여 논한다. 특히, 풍향에 상관없이 효율을 보장하고, 아주 약한 풍속 조건에서도 기동(Cut-in)되며, 낮은 평균풍속 5~6m/s인 지역에서도 경제적으로 풍력발전 단지의 구축이 가능하며, 다양한 지역에 설치가 가능하고, 소음이 적고 친(親) 환경적이며, 양산이 가능해 납기를 예측할 수 있으며 그리고 모든 부품 및 시스템의 국산화가 가능해야 한다는 7가지 조건을 만족하는 풍력발전시스템으로 이를 실현시키기 위하여 현재 풍력발전시스템의 가장 앞선 요소기술(state-of-the-art technology)인 직접구동 방식, 적층식, STR 블레이드, AFPM동기발전기, 자기부상 및 전자브레이크 등 5가지 기술을 복합 융합하여 최고의 효율 및 성능을 보장해 주는 적층 연곡형 시스템이다.

  • PDF

Effect of Groove Shapes on Mechanical Properties of STS316L Repaired by Direct Energy Deposition (직접 에너지 적층을 통한 STS316L 소재의 보수 공정에서 그루브 형상이 기계적 특성에 미치는 효과)

  • Oh, W.J.;Son, Y.;Son, J.Y.;Shin, G.W.;Shim, D.S.
    • Transactions of Materials Processing
    • /
    • v.29 no.2
    • /
    • pp.103-112
    • /
    • 2020
  • This study explores the effects of different pre-machining conditions on the deposition characteristics and mechanical properties of austenitic stainless steel samples repaired using direct energy deposition (DED). In the DED repair process, defects such as pores and cracks can occur at the interface between the substrate and deposited material. In this study, we varied the shape of the pre-machined zone for repair in order to prevent cracks from occurring at the slope surface. After repairs by the DED process, macro-scale cracks were observed in samples that had been pre-machined with elliptic and trapezoidal grooves. In addition, it was not possible to completely prevent micro-crack generation on the sloped interfaces, even in the capsule-type grooved sample. From observation of the fracture surfaces, it was found that the cracks around the inclined interface were due to a lack of fusion between the substrate and the powder material, which led to low tensile properties. The specimen with the capsule-type groove provided the highest tensile strength and elongation (respective of 46% and 571% compared to the trapezoidal grooved specimen). However, the tensile properties were degraded compared to the non-repaired specimen (as-hot rolled material). The fracture characteristics of the repaired specimens were determined by the cracks at the sloped interfaces. These cracks grew and coalesced with each other to form macro-cracks, they then coalesced with other cracks and propagated to the substrate, causing final fracture.

Effect of Repair Width on Mechanical Properties of 630 Stainless Steel Repaired by Direct Energy Deposition Process (직접 에너지 적층 공정을 이용한 보수 공정에서 보수 폭에 따른 기계적 특성 관찰)

  • Oh, Wook-Jin;Shin, Gwang-Yong;Son, Yong;Shim, Do-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.3
    • /
    • pp.42-50
    • /
    • 2020
  • This study explores the effects of repair width on the deposition characteristics and mechanical properties of stainless steel samples repaired using direct energy deposition (DED). In the DED repair process, defects such as pores and cracks can occur at the interface between the substrate and deposited material. In this study, we changed the width of the pre-machined zone for repair in order to prevent cracks from occurring at the inclined surface. As a result of the experiment, cracks of 10-40 ㎛ in length were formed along the inclined slope regardless of the repair width. Yield and tensile strength decreased slightly as the repair width increased, but the total and uniform elongation increased. This is due to the orientation of the crack. For specimens with a repair width of 20 mm, yield and tensile strength were 883 MPa and 1135 MPa, respectively. Total and uniform elongations were 14.3% and 8.2%, respectively. During observation of the fracture specimens, we noted that the fracture of the specimen with an 8 mm repair width occurred along the slope, whereas specimens with 14 mm and 20 mm repair depths fractured at the middle of the repaired region. In conclusion, we found that tensile properties were dependent upon the repair width and the inclination of the crack occurred at the interface.