• Title/Summary/Keyword: 직교 주파수분할 다중화 방식

Search Result 37, Processing Time 0.023 seconds

Performance Improvement of OFDM Receivers by Using Rational Oversampling of the Received Signals (수신신호의 비정수배 과표본화를 이용한 OFDM 수신기의 성능 개선)

  • Lee, Young-Su;Seo, Bo-Seok
    • Journal of Digital Contents Society
    • /
    • v.10 no.2
    • /
    • pp.189-198
    • /
    • 2009
  • In this paper, we propose a method to improve the performance of orthogonal frequency division multiplexing (OFDM) receivers by using oversampling the received signals. Demodulation of the received OFDM signals is to detect the amplitude and phase components of the subcarriers. From the oversampled OFDM signals, we can get redundant informations in frequency domain for the data, which are different in phase but the same in amplitude. By using these properties, we can obtain signal to noise ratio (SNR) gain by the oversampling ratio compared to the receivers which sampled with symbol rate. In this paper, we propose oversampled receivers whose oversampling ratio is expanded from integer to general rational number. Through computer simulations, we show the validity of the proposed methods by comparing the performance of the receivers with nonideal band-limiting filters.

  • PDF

A Study on OFDM FFT Design for Peformance of Wireless Multimedia Network (무선 멀티미디어 통신망의 성능 향상을 위한 OFDM FFT 설계에 관한 연구)

  • Kang Jung-yong;Lee Seon-keun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.1A
    • /
    • pp.70-75
    • /
    • 2005
  • The efficient hardware design of the the algorithm is important in wide variety of DSP. One example is OFDM(Orthogonal Frequency Division Multiplexing) based WLAN(Wireless Local Area Network) systems which place high requirements on throughput and power consumption on FFT. The output RAM is composed of two banks of $64{\times}W.$ The banks are swapped immediately following the falling edge or the start signal strobe. This bank swapping allows 64-Point FFT to continue Processing samples and to continue filling the alternative bank, without affecting the data flow outputs.

Performance of OFDM M-ary QAM System in the presence of Carrier Frequency Offset (반송파 주파수 옵셋에 따른 OFDM M-ary QAM 시스템의 성능 분석)

  • 계선형;유형석;서종수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.6B
    • /
    • pp.1024-1031
    • /
    • 1999
  • In order to transmit high-speed wide band signals efficiently in multipath fading environments, M-ary QAM signalling combined with OFDM transmission technique is applied. In this paper, the effect of synchronization error caused by carrier frequency offset and SER(Symbol Error Rate) performance of OFDM-16QAM and OFDM-64QAM are theoretically analyzed. Our result shows that as the number of sub-carrier in OFDM system increases the frequency-offset caused inter-channel interference(ICI) increases significantly, and that an error floor occurs even at high SNR of OFDM system. For OFDM-64QAM, the error floor occurs at SER=1$\times$10-7 when a normalized frequency-offset is 0.001, in which the SNR degradation is much greater than that of OFDM-16QAM. From this study the maximum allowable frequency-offset of OFDM-16QAM and OFDM-64QAM systems can be determined to meet the specific SER requirement.

  • PDF

Performance Analysis of the Wide-band Radio Transmission System using a Multi-carrier Adaptive Modulation Schemes (다중반송파 적응변조를 이용한 광대역 무선전송시스템의 성능분석)

  • 임승주;강민구;천현수;강창언
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.4
    • /
    • pp.621-629
    • /
    • 2001
  • In this thesis a wireless data transmission system has been proposed and analysed that uses the multi-carrier technique with the adaptive modulation scheme. In general, the OFDM(Orthogonal Frequency Division Multiplexing) system is assigning a same amount of information to all sub-carriers in a wireless data transmission. In the proposed system, the different amount of information is assigned to each sub-carrier depending on the state of channel and the target probability of error of system. With the proposed scheme, the transmission rate can be maximized with the fixed power and the required power to transmit the information can be minimized with the target probability of error of system.

  • PDF

Efficient Modulation for the Last Symbol in OFDM Systems (OFDM 시스템의 마지막 심볼을 위한 효율적인 변조 방식)

  • Yu, Heejung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.3
    • /
    • pp.513-519
    • /
    • 2018
  • OFDM modulation has been used for a transmission scheme in 4G LTE (Long Term Evolution) and Wi-Fi systems to mitigate the effects of frequency selective fading channels. An OFDM modulation is a block transmission scheme because an OFDM symbol consists of multiple subcarriers with narrow bandwidth. Therefore, all OFDM symbols in a frame should be filled out with data and padding bits. Depending on the amount of data, more padding bits than information bits can occupy the last OFDM symbol. Such inefficiency causes the loss of throughput. To overcome this problem, an efficiency padding method is proposed by using the property of DFT (Discrete Fourier Transform). In the proposed method, symbol duration of the last symbol is changed depending on the number used data subcarriers in the last symbol. With numerical evaluation, it is examined that throughput enhancement achieved by the proposed method can be about 20% depending a transmission scheme and data length.

Adaptive OFDM with Channel Predictor in Broadband Wireless Mobile Communications (광대역 무선 이동 통신에서 채널 예측기를 갖는 적응 OFDM)

  • 황태진;황호선;백흥기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.4A
    • /
    • pp.370-377
    • /
    • 2004
  • In this paper, we present an adaptive modulation technique for orthogonal frequency division multiplexing (OFDM) for broadband wireless communications. Also, using improved channel prediction, we enhance the performance of adaptive OFDM in high mobility environments. Adaptive modulation technique has been shown to achieve reliable high-rate data transmission over frequency-selective fading channel when OFDM is employed. This scheme requires the accurate channel information between two stations for a better performance. In an outdoor high mobility environment, most of adaptive OFDM systems have to be given the channel information transmitted from the receiver. Even if it is possible, there is some delay. Moreover, the channel impulse response between two stations is very rapidly varied. If the channel information is obsolete at the time of transmission, then poor system performance will result. In order to solve this problem, we propose adaptive OFDM with improved channel predictor. The proposed bit allocation algorithm has a lower complexity and the proposed scheme mitigates the effect of channel delay. Robust approach is less sensitive to outdated channel information. Performance results show that the proposed scheme can achieve considerable performance enhancement.

Performance Analysis of Proportional Fair Scheduling with Partial Feedback Information for Multiuser MIMO-OFDMA Systems (다중 사용자 MIMO-OFDMA 시스템에서 부분 궤환 정보를 이용한 비례적 공정 스케줄링의 성능 분석)

  • Kang, Min-Gyu;Byun, Il-Mu;Park, Jin-Bae;Kim, Kwang-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.6A
    • /
    • pp.643-651
    • /
    • 2008
  • In this paper, we analyze the performance of normalized SNR based proportional fair scheduling with partial feedback information for multiuser MIMO-OFDMA systems. The closed form expression on the downlink capacity of the selective partial CQI feedback scheme is derived and its asymptotic behavior is investigated. From the performance analysis and numerical results, it is found that the optimal growth rate of downlink capacity can be achieved with bounded average feedback overhead irrespective of the number of users.

PAPR Reduction in Limited Feedback MIMO Beeamforming OFDM Systems (제한된 되먹임의 송신 빔성형 MIMO OFDM 시스템에서 PAPR 감소 기법)

  • Shin, Joon-Woo;Jeong, Eui-Rim;Lee, Yong-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.8C
    • /
    • pp.758-766
    • /
    • 2007
  • High peak-to-average power ratio(PAPR) is one of serious problems in the orthogonal frequency division multiplexing(OFDM) systems. This paper proposes a PAPR reduction technique for limited feedback multiple input multiple output(MIMO) OFDM systems. The proposed method is based on the null space of the MIMO channel where a dummy signal is made in the channel's null space and then, subtracted from the original signal to reduce the PAPR. First, we show that a problem occurs when the existing method is directly applied to limited feedback MIMO case. Then, a weight function for the dummy signal is proposed to mitigate the degradation of the receiver performance while still reducing PAPR significantly. The weight function is derived from a constrained nonlinear optimization problem to minimize the mean square error between the received signal and its ideal signal. Simulation results shows that the proposed technique provides about 2.5dB PAPR reduction with 0.2dB bit-error probability loss.

PAPR Reduction Scheme Using Selective Mapping in GFDM (선택사상기법을 이용한 GFDM의 최대전력 대 평균전력 비 감소기법)

  • Oh, Hyunmyung;Yang, Hyun Jong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.6
    • /
    • pp.698-706
    • /
    • 2016
  • Orthogonal frequency division multiplexing (OFDM) has high peak to power ratio (PAPR). High PAPR makes problems such as signal distortion and circuit cost increasing. To solve the problemsm several PAPR reduction methods have been proposed. However, synchronization and orthogonality in OFDM systems may be a limitation to reduce latency for 5G networks. Generalized frequency division multiplexing (GFDM) is one of the possible solutions for asynchronous and non-orthogonal systems, which are more preferable to reduce the latency. However, multiple subsymbols in GFDM result in more superposition in time domain, GFDM has higher PAPR. Selective mapping (SLM) is one of PAPR reduction techniques in OFDM, which uses phase shift. The PAPR of GFDM SLM is compared to conventional GFDM and OFDM SLM in terms of PAPR reduction enhancement via numerical simulations. In addition, the out-of-band performance is analyzed in the aspect of asynchronous condition interference.

A High Data Rate Medical Implant Communication System Transmitter for Body Implantable Devices (체내이식용 기기를 위한 고속 MICS 송신기 구현)

  • Im, Jun-Ha;Jung, Yun-Ho;Kim, Jae-Seok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.4
    • /
    • pp.24-31
    • /
    • 2011
  • A high data rate Medical Implant Communications Service (MICS) transmitter for implantable medical devices (IMD) is proposed. An orthogonal frequency division multiplexing (OFDM)-based multicarrier scheme is used to overcome the data rate limitation caused by the narrow bandwidth of 300 kHz. The proposed transmitter utilizes multiple MICS channels simultaneously, supporting increased data rate. To satisfy the MICS regulation, various schemes are applied including optimized subcarrier allocation and inverse fast Fourier transform (IFFT) architecture, and additional sidelobe suppression technique. Simulation results show that the proposed transmitter can support a maximum data rate of 4.86 Mbps, which is more than ten times faster than the previous systems.