• Title/Summary/Keyword: 직교 이방성 모델

Search Result 42, Processing Time 0.04 seconds

Derivation of Effective Material Properties of Reinforced Braid Layer Using Detailed 3-D Finite Element Model (상세 유한요소 모델을 이용한 섬유 보강사의 등가물성 유도)

  • Song, Jeong-In;Cho, Jin-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1752-1759
    • /
    • 2004
  • Reinforced braid layer (RBL) in automobile power steering hose plays an important role in power steering system. When the working oil is applied to the power steering hose, RBL suppresses rubber hose deformation from internal pressure and heat expansion. RBL is woven textile composites having a double-row structure of nylon cords twisted with the specific helix angle. In this paper, effective material properties of RBL are estimated using a detailed 3-D finite element model considering its complicated geometry. Numerical experiments based on a superposition method are carried out to simulate uniaxial tensile loading condition.

A Study on the Estimation for the Compressive Strength of Member According to the Knot Types (옹이 형태별 소재의 압축강도 예측에 관한 연구)

  • Kim, Gwang-Chul
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.170-177
    • /
    • 2010
  • Finite element numerical analysis was conducted with using the knot data which has a strong influence on the prediction of capacity for the structural wood member. Wood is a orthotropic property unlike other structural materials, so orthotropic property was applied. Knot was modelled as a cylinder shape, cone shape, and cubic shape. Compressive test was carried out to investigate the failure types and to calculate ultimate strengths for the wood members. Numerical model which can reflect the member size, number of knot, location of knot, size of knot was created and analyzed. By the numerical analysis using the ultimate compressive strength, numerical stress distribution types of each specimen was compared to real failure types for the test specimen. Cylinder shape modelling might be most reasonable, according to the necessary time for the analysis, the difficulty of element meshing, and the similarity of stress transfer around knot. Moreover, according to the stress and deformation distribution for the numerical analysis, failures or cracks of real specimen were developed in the vicinity of stress concentrated section and most transformed section. Based on the those results, numerical analysis could be utilized as a useful method to analyze the performance of bending member and tensile member, if only orthotropic property and knot modelling were properly applied.

Vibration Analysis of Laminated Composite Corrugated Plates (적층 복합재료 주름판의 진동해석)

  • Park, Kyung-Jo;Kim, Young-Wann
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.347-352
    • /
    • 2016
  • This work presents the free vibration characteristics of laminated composite corrugated rectangular plates using the analytical method. Because it is very difficult to determine its mechanical behavior of 3-dimensional corrugated structures analytically, the equivalent homogenization model is adapted to investigate the overall mechanical behavior of corrugated structures. The corrugated element can be homogenized as an orthotropic material. Both the effective extensional and flexural stiffness of this homogenized equivalent orthotropic material are considered in the analysis. The present analytical results are validated by those obtained from 3D finite element analysis based on shell elements. The natural frequencies and global vibration mode shapes obtained from present analytical and finite element analysis are presented. Some numerical results are presented to check the effect of the geometric properties.

A Study on the Nonlinear Stress-Deformation Analysis and Design of Unity-typed Pneumatic Structures Under the Design Load (단일공기막 구조물의 설계하중에 따른 비선형 응력-변형 해석 및 설계에 관한 연구)

  • Shon, Su-Deok;Jeong, Eul-Seok;Kim, Seung-Deog
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.2 s.16
    • /
    • pp.47-55
    • /
    • 2005
  • The method to form the space of the pneumatic structures by internal pressure is classified greatly as the dual type with the nlty type. The shape of the pneumatic structures consists of the curved surface under uniform tension not greatly to be deformed by the design load and stress must not be concentrated also. Therefore, In this study, we have done the structural analysis of the unity typed pneumatic structures by the NASS which is the program for nonlinear analysis. The analytic model is a rectangular pneumatic membrane structures which have four side fixed edges. And we have done the nonlinear incremental analysis considering the orthotropic material.

  • PDF

A Study on Squeal Noise Simulation considering the Friction Material Property Changes according to Temperature and Pressure in an Automotive Brake Corner Module (차량용 브레이크 코너 모듈에서 마찰재의 온도와 압력에 따른 물성치 변화를 고려한 스퀼 소음 해석 연구)

  • Cho, Hojoon;Kim, Jeong-Tae;Chae, Ho-Joong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.546-552
    • /
    • 2012
  • This paper is a study on squeal noise simulation under the consideration of temperature and pressure dependent material properties of friction material. For this, data of pressure and temperature dependent material properties of lining is achieved by using lining data base and exponential curve fit. Complex eigenvalue analysis is performed for predicting squeal noise frequency and instability and chassis dynamo test is performed for achieving squeal noise frequency, sound pressure level, occurrence temperature & pressure. Initial multi models are composed for considering complex interface conditions such as pad ear-clip, piston-housing and guide pin-torque member. The simulation result of base models is compared with the test result. Squeal noise simulation under the consideration of temperature and pressure dependent material properties of friction material is performed and analyzed using multi models. And additional condition is disc material property variation. Entire simulation conditions are combined and analyzed. Finally, this paper proposes direction of the warm squeal noise model.

  • PDF

Development of a new test method for the prediction of TBM disc cutters life (TBM 디스크 커터의 수명 예측 방법 개발)

  • Kim, Dae-Young;Farrokh, Ebrahim;Jung, Jae-Hoon;Lee, Jae-Won;Jee, Sung-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.475-488
    • /
    • 2017
  • Wear prediction of TBM disc cutters is a very important issue for hard rock TBMs as number of cutter head intervention. In this regard, some model such as NTNU, Gehring model, CSM models have been used to predict disc cutter wear and intervention interval. There are some deficiencies in these models. This paper developed a new test method for wear prediction for TBM disc cutter and proposed a new abrasion index. In this regard, different abrasivity indices along with their testing methods are explained. A comparative study is performed to develop the predictability of different cutter life evaluation methods and index. The evaluation of the new methods proposed in this paper shows a very good agreement with the actual cutter life and intervention interval length. The proposed tester and index can be easily used to predict the intervention interval length and cutter wear evaluation in both planning and construction stages of a TBM tunneling project.

A Study on Crashworthiness and Rollover Characteristics of Low-Floor Bus made of Honeycomb Sandwich Composites (하니컴 샌드위치 복합재를 적용한 저상버스의 충돌 및 전복 특성 연구)

  • Shin, Kwang-Bok;Ko, Hee-Young;Cho, Se-Hyun
    • Composites Research
    • /
    • v.21 no.1
    • /
    • pp.22-29
    • /
    • 2008
  • This paper presents the evaluation of crashworthiness and rollover characteristics of low-floor bus vehicles made of aluminum honeycomb sandwich composites with glass-fabric epoxy laminate facesheets. Crashworthiness and rollover analysis of low-floor bus was carried out using explicit finite element analysis code LS-DYNA3D with the lapse of time. Material testing was conducted to determine the input parameters for the composite laminate facesheet model, and the effective equivalent damage model for the orthotropic honeycomb core material. The crash conditions of low-floor bus were frontal accident with speed of 60km/h. Rollover analysis were conducted according to the safety rules of European standard (ECE-R66). The results showed that the survival space for driver and passengers was secured against frontal crashworthiness and rollover of low-floor bus. Also, The modified Chang-Chang failure criterion is recommended to predict the failure mode of composite structures for crashworthiness and rollover analysis.

Nonlinear Finite Element Analysis of Reinforced and Prestressed Concrete Structures (철근 및 프리스트레스트 콘크리트 구조물의 비선형 유한요소 해석)

  • Kwak, Hyo Gyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.269-279
    • /
    • 1994
  • This paper concentrates on the finite element analysis of concrete structures considering the material nonlinearity and time-dependent structural behavior. Using the rotating crack model among the smeared cracking model, the structural behavior up to ultimate load is simulated, and concrete is assumed to be an orthotropic material. Especially to include the tension stiffening effect in bending behavior, a criterion based on the fracture mechanics concept is introduced and the numerical error according to the finite element mesh size can be minimized through the application of the proposed criterion. Besides, the governing equation for steel is systematized by embeded model to cope with the difficulty in modeling of complex geometry. Finally, to trace the structural behavior with time under cracked and/or uncracked section, an algorithm for the purpose of time-dependent analysis is formulated in plane stress-strain condition by the age-adjusted effective modulus method.

  • PDF

Buckling Analysis of Laminated Composite Trapezoidal Corrugated Plates (적층 복합재료 사다리꼴 주름판의 좌굴해석)

  • Park, Kyung-Jo;Kim, Young-Wann
    • Composites Research
    • /
    • v.32 no.4
    • /
    • pp.185-190
    • /
    • 2019
  • This work investigates the elastic buckling characteristics of laminated composite trapezoidal corrugated plates with simply supported edges using the analytical method. In the analysis, three types of in-plane loading conditions: uniaxial, biaxial and shear loads are considered. Because it is very difficult to determine the mechanical behavior of 3-dimensional corrugated structures analytically, the equivalent homogenization model is adapted to investigate the overall mechanical behavior of corrugated plates. The corrugated element is homogenized as an orthotropic material. The previous formulae for bending rigidities of corrugated plate are adapted in this paper. The comparisons of the proposed analytical results with those of FEA based on the shell element are made to verify the proposed analytical method. In the comparison study both the critical buckling loads and the buckling mode shapes are presented. Some numerical results are presented to check the effect of the geometric properties.

Simulation of Low Velocity Impact of Honeycomb Sandwich Composite Panels for the BIMODAL Tram Application (바이모달 트램 적용 하니컴 샌드위치 복합재 패널의 저속 충격 해석)

  • Lee, Jae-Youl;Jeong, Jong-Cheol;Shin, Kwang-Bok
    • Composites Research
    • /
    • v.20 no.4
    • /
    • pp.42-50
    • /
    • 2007
  • This paper describes the results of experiments and numerical simulation studies on the low-velocity impact damage of two different sandwich composite panels for application to bodyshell and floor structure of the BIMODAL tram vehicle. Square test samples of 100mm sides were subjected to low-velocity impact loading using an instrumented testing machine at four impact energy levels. Part of this work presented is focused on the finite element analysis of low-velocity impact response onto a sandwich composite panels. It is based on the application of explicit finite element (FE) analysis codes LS-DYNA 3D to study the impact response of sandwich structures under low-velocity impact conditions. Material testing was conducted to determine the input parameters for the metallic and composite material model, and the effective equivalent damage model for the orthotropic honeycomb materials. Numerical and experimental results showed a good agreement for damage area and the depth of indentation of sandwich composite panels created by the impact loading.