• Title/Summary/Keyword: 직교이방성 재료

Search Result 130, Processing Time 0.02 seconds

Analysis of Orthotropic Body Under Partial-Uniform Shear Load (부분(部分) 등분포(等分布) 전단하중(剪斷荷重)을 받는 이방성(異方性) 구조체(構造體)의 해석(解析))

  • Chang, Suk Yoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.1-10
    • /
    • 1984
  • This dissertation presents an exact solution for the shearing and normal stresses of an orthotropic plane body loaded by a pairtial-uniform shear load. The solution satisfies the equilibrium and compatibility equations concurrently. An Airy stress function is introduced to solve the problem related to an orthotropic half-infinite plane under a partial-uniform shear load. All the equations for orthotropy must be degenerated into the expressions for isotropy when orthotropic constants are replaced by isotropic ones. The author has evaluated all the equations of orthotropy and succeeded in obtaining exactly identical expressions to the equations of isotropy which were derived independently by means of L'hospital's rule. The analytical results of, isotropy ate compared with the simple results of other investigator. Since a concentrated shear load is a particular case of partial-uniform shear load, all the equations of partial-uniform shear load case are degenerated into the expressions for concentrated load case of isotropy and orthotropy. The formal solution is expressed in terms of closed form. The numerical results for orthotropy are evaluated for two kinds and two different orientations of the grain of wood. The type of wood considered are three-layered plywood and laminated delta wood. The distribution of normal and shearing stresses are shown in figures. It is noted that the distribution of stresses of orthctropic materials dependson the type of materials and orientations of the grain.

  • PDF

Analysis of Orthotropic Body under Ultimate Moment Load (극한(極限)모멘트 하중(荷重)을 받는 이방성(異方性) 구조체(構造體)의 해석(解析))

  • Chang, Suk Yoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.3
    • /
    • pp.95-105
    • /
    • 1985
  • This dissertation presents an exact solution for the normal and shearing stresses of an orthotropic plane body loaded by a moment load. The solution satisfies the conditions of equilibrium compatibility equations concurrently and is governing for the body being in the elasto-plastic state. An Airy stress function is introduced to solve the problem related to an orthotropic half-infinite plane under a moment load. All the equations for orthotropy must be degenerated into the expressions for isotropy when orthotropic constants are replaced by isotropic ones. The author has evaluated all the equations of orthotropy and succeeded in obtaining exactly identical expressions to the equations of isotropy which were derived independently by of L'hosptials rule. The analytical results of isotropy are compared with the simple results of other investigator. Since moment Load under the elastic state and plastic state only is a particular case of moment load under the elasto-plastic state. All the equations of elasto-plastic state case are degenerated into the expressions for the each case. The formal solution is expressed in terms of closed form. The orthotropic constants are evaluated for two kinds and two different orientations of the grain of wood and two kinds of structures. The numerical results for orthotropy are evaluated for one kind and two different orientations of three-layered ply wood. The distribution of normal and shearing stresses are shown in figures. It is noted that the distribution of stresses of orthotropic materials depends on the type of materials and orientations of the grain and stiffening.

  • PDF

Parameter Study for the Application of Ultra Thin Polymer Concrete Pavement (초박층 폴리머콘크리트 포장적용을 위한 매개변수 해석)

  • Yoon, Sang il;Jang, Yong joon;Choi, Jinwoong;Hong, Sungnam;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.46-54
    • /
    • 2015
  • Base on Korean design code, previous design code had not considered the effect of pavement on the orthotropic steel deck, however recent design code (Limit State Design Method, 2012) allowed to consider the effect of pavement on the orthotropic steel deck, and efforts to apply the stiffness of pavement to the deck continue. Meanwhile, research on the effect of ultra thin bridge deck overlay on the orthotropic steel deck is inadequate, previous study was limited in about fatigue stress and performance between pavement layer and the orthotropic steel deck. In this study, according to changing of pavement layer stiffness application, pavement materials, pavement thickness and steel deck thickness, analysis of deflection. In addition to base on this result, consider effectiveness of ultra-thin pavement stiffness application on the orthotropic steel deck.

A Study on Crashworthiness and Rollover Characteristics of Low-Floor Bus made of Honeycomb Sandwich Composites (하니컴 샌드위치 복합재를 적용한 저상버스의 충돌 및 전복 특성 연구)

  • Shin, Kwang-Bok;Ko, Hee-Young;Cho, Se-Hyun
    • Composites Research
    • /
    • v.21 no.1
    • /
    • pp.22-29
    • /
    • 2008
  • This paper presents the evaluation of crashworthiness and rollover characteristics of low-floor bus vehicles made of aluminum honeycomb sandwich composites with glass-fabric epoxy laminate facesheets. Crashworthiness and rollover analysis of low-floor bus was carried out using explicit finite element analysis code LS-DYNA3D with the lapse of time. Material testing was conducted to determine the input parameters for the composite laminate facesheet model, and the effective equivalent damage model for the orthotropic honeycomb core material. The crash conditions of low-floor bus were frontal accident with speed of 60km/h. Rollover analysis were conducted according to the safety rules of European standard (ECE-R66). The results showed that the survival space for driver and passengers was secured against frontal crashworthiness and rollover of low-floor bus. Also, The modified Chang-Chang failure criterion is recommended to predict the failure mode of composite structures for crashworthiness and rollover analysis.

Buckling Analysis of Laminated Composite Trapezoidal Corrugated Plates (적층 복합재료 사다리꼴 주름판의 좌굴해석)

  • Park, Kyung-Jo;Kim, Young-Wann
    • Composites Research
    • /
    • v.32 no.4
    • /
    • pp.185-190
    • /
    • 2019
  • This work investigates the elastic buckling characteristics of laminated composite trapezoidal corrugated plates with simply supported edges using the analytical method. In the analysis, three types of in-plane loading conditions: uniaxial, biaxial and shear loads are considered. Because it is very difficult to determine the mechanical behavior of 3-dimensional corrugated structures analytically, the equivalent homogenization model is adapted to investigate the overall mechanical behavior of corrugated plates. The corrugated element is homogenized as an orthotropic material. The previous formulae for bending rigidities of corrugated plate are adapted in this paper. The comparisons of the proposed analytical results with those of FEA based on the shell element are made to verify the proposed analytical method. In the comparison study both the critical buckling loads and the buckling mode shapes are presented. Some numerical results are presented to check the effect of the geometric properties.

Nonlinear Finite Element Analysis of Reinforced and Prestressed Concrete Structures (철근 및 프리스트레스트 콘크리트 구조물의 비선형 유한요소 해석)

  • Kwak, Hyo Gyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.269-279
    • /
    • 1994
  • This paper concentrates on the finite element analysis of concrete structures considering the material nonlinearity and time-dependent structural behavior. Using the rotating crack model among the smeared cracking model, the structural behavior up to ultimate load is simulated, and concrete is assumed to be an orthotropic material. Especially to include the tension stiffening effect in bending behavior, a criterion based on the fracture mechanics concept is introduced and the numerical error according to the finite element mesh size can be minimized through the application of the proposed criterion. Besides, the governing equation for steel is systematized by embeded model to cope with the difficulty in modeling of complex geometry. Finally, to trace the structural behavior with time under cracked and/or uncracked section, an algorithm for the purpose of time-dependent analysis is formulated in plane stress-strain condition by the age-adjusted effective modulus method.

  • PDF

Characteristic Analysis of Falling Weight Impact Response in CF/Epoxy Composite Plates Using Frequency Responses (주파수 응답을 이용한 CF/Epoxy 복합적층판의 낙추충격 특성평가)

  • 임광희;박노식;김영남;김선규;양인영
    • Composites Research
    • /
    • v.16 no.2
    • /
    • pp.9-17
    • /
    • 2003
  • We have implemented a system of falling weight impact tester in order to evaluate the impact energy absorbing characteristics and impact strength of CFRP laminate plates. The absorbed energy of T-300 orthotropic composites is higher than that of quasi-isotropic specimen over impact energy 7J, but in case of using T700 fiber, much difference does not show. Also, absorbed energy of T-300 orthotropic composites, which are composed of the same stacking number and orientation became more than that of T700 fiber specimen however there was no big difference in case of quasi-isotropic specimens. Delamination area of impacted specimens was measured with ultrasonic C-scanner to find correlation between impact energy and delamination area. Delamination area and frequency responses were evaluated between impacted and unimpacted specimens. There is a strong correlation between frequency responses and impact-induced delamination. The presence and scale of damages have been investigated based on the variations of frequency responses.

Analysis Study on Fatigue Stress on the Orthotropic Steel Deck Applied Polymer Concrete Pavement (폴리머 콘크리트 포장을 적용한 강바닥판의 피로응력에 관한 해석적 연구)

  • Han, Bum-Jin;Yoon, Sang-Il;Choi, Byung-Jin;Choi, Jin-Woong;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.68-77
    • /
    • 2014
  • In this study, polysulfide epoxy polymer concrete was chosen as an ultra thin bridge deck overlay, and the effect of polymer concrete pavement on the fatigue stress range of the orthotropic steel deck was analyzed through the comparative analysis with epoxy asphalt pavement and SFRC pavement. Abaqus was used to estimate the fatigue stress range, and signed von-mises stress was used to estimate fatigue stress range according to pavement materials and thickness, considering there were multi axis stresses which have longitudinal and lateral direction on the welded parts of the steel deck.

Behavior for 2 Ply Rubber/Cord Laminates (2층 고무/코드 적층판의 층간거동)

  • 이윤기;임동진;윤희석;김민호;김춘휴
    • Composites Research
    • /
    • v.16 no.4
    • /
    • pp.1-9
    • /
    • 2003
  • 2 ply laminated composite is regarded to simulate the interply behavior of the belt layer of the tire. It was cone with 3 dimensional FE(Finite Element) analysis to determine interply shear stress and strain. Widthwise, the shear strain was measured by the pin method. These results are compared with those of CLT(classical lamination theory) in center region and those of Kassapoglou's and Kelsey's theory in edge region. In the FE analysis. rubber is assumed as linear elastic material. and rubber/cord laminate as the orthotropic material composed of cord and rubber In the FE result, interlaminar shear stress causing the interlaminar delamination has the largest value in the edge region of the inner rubber layer. Numerical results obtained coincides with CLT well in the center region, and agrees with other theoretical result little in the edge region.

Simple Method of Vibration Analysis of Three Span Continuous Reinforced Concrete Bridge with Elastic Intermediate Support (탄성지지된 3경간 철근콘크리트 교량의 간단한 진동해석법)

  • Kim, Duk-Hyun;Han, Bong-Koo
    • Composites Research
    • /
    • v.17 no.3
    • /
    • pp.23-28
    • /
    • 2004
  • A method of calculating the natural frequency corresponding to the first mode of vibration of beams and tower structures, with irregular cross sections and with arbitrary boundary conditions was developed and reported by Kim, D. H. in 1974. In this paper, the result of application of this method to the three span continuous reinforced concrete bridge with elastic intermediate supports is presented. Such bridge represents either concrete or sandwich type three span bridge on polymeric supports for passive control or on actuators for active control. The concrete slab is considered as a special orthotropic plate. Any method may be used to obtain the deflection influence surfaces needed for this vibration analysis. Finite difference method is used for this purpose, in this paper, The influence of the modulus of the foundation and $D_{22}$, $D_{12}$, $D_{66}$ stiffnesses on the natural frequency is thoroughly studied.