• Title/Summary/Keyword: 지하 탐지

Search Result 164, Processing Time 0.033 seconds

Three-dimensional Finite-difference Time-domain Modeling of Ground-penetrating Radar Survey for Detection of Underground Cavity (지하공동 탐지를 위한 3차원 시간영역 유한차분 GPR 탐사 모델링)

  • Jang, Hannuree;Kim, Hee Joon;Nam, Myung Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.1
    • /
    • pp.20-28
    • /
    • 2016
  • Recently many sinkholes have appeared in urban areas of Korea, threatening public safety. To predict the occurrence of sinkholes, it is necessary to investigate the existence of cavity under urban roads. Ground-penetrating radar (GPR) has been recognized as an effective means for detecting underground cavity in urban areas. In order to improve the understanding of the governing physical processes associated with GPR wave propagation, and interpret underground cavity effectively, a theoretical approach using numerical modeling is required. We have developed an algorithm employing a three-dimensional (3D) staggered-grid finite-difference time-domain (FDTD) method. This approach allows us to model the full electromagnetic wavefield associated with GPR surveys. We examined the GPR response for a simple cavity model, and the modeling results showed that our 3D FDTD modeling algorithm is useful to assess the underground cavity under urban roads.

Development of Fire Detection Model for Underground Utility Facilities Using Deep Learning : Training Data Supplement and Bias Optimization (딥러닝 기반 지하공동구 화재 탐지 모델 개발 : 학습데이터 보강 및 편향 최적화)

  • Kim, Jeongsoo;Lee, Chan-Woo;Park, Seung-Hwa;Lee, Jong-Hyun;Hong, Chang-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.320-330
    • /
    • 2020
  • Fire is difficult to achieve good performance in image detection using deep learning because of its high irregularity. In particular, there is little data on fire detection in underground utility facilities, which have poor light conditions and many objects similar to fire. These make fire detection challenging and cause low performance of deep learning models. Therefore, this study proposed a fire detection model using deep learning and estimated the performance of the model. The proposed model was designed using a combination of a basic convolutional neural network, Inception block of GoogleNet, and Skip connection of ResNet to optimize the deep learning model for fire detection under underground utility facilities. In addition, a training technique for the model was proposed. To examine the effectiveness of the method, the trained model was applied to fire images, which included fire and non-fire (which can be misunderstood as a fire) objects under the underground facilities or similar conditions, and results were analyzed. Metrics, such as precision and recall from deep learning models of other studies, were compared with those of the proposed model to estimate the model performance qualitatively. The results showed that the proposed model has high precision and recall for fire detection under low light intensity and both low erroneous and missing detection capabilities for things similar to fire.

Detecting and Extracting Changed Objects in Ground Information (지반정보 변화객체 탐지·추출 시스템 개발)

  • Kim, Kwangsoo;Kim, Bong Wan;Jang, In Sung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.515-523
    • /
    • 2021
  • An integrated underground spatial map consists of underground facilities, underground structures, and ground information, and is periodically updated. In this paper, we design and implement a system for detecting and extracting only changed ground objects to shorten the map update speed. To find the changed objects, all the objects are compared, which are included in the newly input map and the reference map in the integrated map. Since the entire process of comparing objects and generating results is classified by function, the implemented system is composed of several modules such as object comparer, changed object detector, history data manager, changed object extractor, changed type classifier, and changed object saver. We use two metrics: detection rate and extraction rate, to evaluate the performance of the system. As a result of applying the system to boreholes, ground wells, soil layers, and rock floors in Pyeongtaek, 100% of inserted, deleted, and updated objects in each layer are detected. In addition, it provides the advantage of ensuring the up-to-dateness of the reference map by downloading it whenever maps are compared. In the future, additional research is needed to confirm the stability and effectiveness of the developed system using various data to apply it to the field.

Crack detection in concrete using deep learning for underground facility safety inspection (지하시설물 안전점검을 위한 딥러닝 기반 콘크리트 균열 검출)

  • Eui-Ik Jeon;Impyeong Lee;Donggyou Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.555-567
    • /
    • 2023
  • The cracks in the tunnel are currently determined through visual inspections conducted by inspectors based on images acquired using tunnel imaging acquisition systems. This labor-intensive approach, relying on inspectors, has inherent limitations as it is subject to their subjective judgments. Recently research efforts have actively explored the use of deep learning to automatically detect tunnel cracks. However, most studies utilize public datasets or lack sufficient objectivity in the analysis process, making it challenging to apply them effectively in practical operations. In this study, we selected test datasets consisting of images in the same format as those obtained from the actual inspection system to perform an objective evaluation of deep learning models. Additionally, we introduced ensemble techniques to complement the strengths and weaknesses of the deep learning models, thereby improving the accuracy of crack detection. As a result, we achieved high recall rates of 80%, 88%, and 89% for cracks with sizes of 0.2 mm, 0.3 mm, and 0.5 mm, respectively, in the test images. In addition, the crack detection result of deep learning included numerous cracks that the inspector could not find. if cracks are detected with sufficient accuracy in a more objective evaluation by selecting images from other tunnels that were not used in this study, it is judged that deep learning will be able to be introduced to facility safety inspection.

Development of a Deep Learning-based Fire Extinguisher Object Detection Model in Underground Utility Tunnels (딥러닝 기반 지하 공동구 내 소화기 객체 탐지 모델 개발)

  • Sangmi Park;Changhee Hong;Seunghwa Park;Jaewook Lee;Jeongsoo Kim
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.4
    • /
    • pp.922-929
    • /
    • 2022
  • Purpose: The purpose of this paper is to develop a deep learning model to detect fire extinguishers in images taken from CCTVs in underground utility tunnels. Method: Various fire extinguisher images were collected for detection of fire extinguishers in the running-based underground utility tunnel, and a model applying the One-stage Detector method was developed based on the CNN algorithm. Result: The detection rate of fire extinguishers photographed within 10m through CCTV video in the underground common area is over 96%, showing excellent detection rate. However, it was confirmed that the fire extinguisher object detection rate drops sharply at a distance of 10m or more, in a state where it is difficult to see with the naked eye. Conclusion: This paper develops a model for detecting fire extinguisher objects in underground common areas, and the model shows high performance, and it is judged that it can be used for underground common area digital twin model synchronizing.

Effect on self-enhancement of deep-learning inference by repeated training of false detection cases in tunnel accident image detection (터널 내 돌발상황 오탐지 영상의 반복 학습을 통한 딥러닝 추론 성능의 자가 성장 효과)

  • Lee, Kyu Beom;Shin, Hyu Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.3
    • /
    • pp.419-432
    • /
    • 2019
  • Most of deep learning model training was proceeded by supervised learning, which is to train labeling data composed by inputs and corresponding outputs. Labeling data was directly generated manually, so labeling accuracy of data is relatively high. However, it requires heavy efforts in securing data because of cost and time. Additionally, the main goal of supervised learning is to improve detection performance for 'True Positive' data but not to reduce occurrence of 'False Positive' data. In this paper, the occurrence of unpredictable 'False Positive' appears by trained modes with labeling data and 'True Positive' data in monitoring of deep learning-based CCTV accident detection system, which is under operation at a tunnel monitoring center. Those types of 'False Positive' to 'fire' or 'person' objects were frequently taking place for lights of working vehicle, reflecting sunlight at tunnel entrance, long black feature which occurs to the part of lane or car, etc. To solve this problem, a deep learning model was developed by simultaneously training the 'False Positive' data generated in the field and the labeling data. As a result, in comparison with the model that was trained only by the existing labeling data, the re-inference performance with respect to the labeling data was improved. In addition, re-inference of the 'False Positive' data shows that the number of 'False Positive' for the persons were more reduced in case of training model including many 'False Positive' data. By training of the 'False Positive' data, the capability of field application of the deep learning model was improved automatically.

A Study on Leak Detection Technique of a Pipe In a Noisy Environment (기계잡음 환경에서의 배관 누설탐지기법에 관한 연구)

  • Yoon, Doo-Byung;Park, Jin-Ho;Shin, Sung-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.7
    • /
    • pp.449-460
    • /
    • 2012
  • The importance of the leak detection of a buried pipe in a power plant of Korea is being emphasized as the buried pipes of a power plant are more than 20 years old. The objective of this work is to enhance the capability of the leak detection technique in a noisy environment. For this purpose, a modified cross-correlation method that can effectively remove the rotating machinery noise component is suggested. In addition, a method for leak point detection using phase information of cross-spectrum is suggested. The validity of the proposed method is verified by performing an experiment. The experimental result demonstrates that the performance of the cross-correlation method can be enhanced by reducing the periodic noise components due to mechanical equipment.