• Title/Summary/Keyword: 지표 유출량

Search Result 457, Processing Time 0.031 seconds

Linkage of Hydrological Model and Machine Learning for Real-time Prediction of River Flood (수문모형과 기계학습을 연계한 실시간 하천홍수 예측)

  • Lee, Jae Yeong;Kim, Hyun Il;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.3
    • /
    • pp.303-314
    • /
    • 2020
  • The hydrological characteristics of watersheds and hydraulic systems of urban and river floods are highly nonlinear and contain uncertain variables. Therefore, the predicted time series of rainfall-runoff data in flood analysis is not suitable for existing neural networks. To overcome the challenge of prediction, a NARX (Nonlinear Autoregressive Exogenous Model), which is a kind of recurrent dynamic neural network that maximizes the learning ability of a neural network, was applied to forecast a flood in real-time. At the same time, NARX has the characteristics of a time-delay neural network. In this study, a hydrological model was constructed for the Taehwa river basin, and the NARX time-delay parameter was adjusted 10 to 120 minutes. As a result, we found that precise prediction is possible as the time-delay parameter was increased by confirming that the NSE increased from 0.530 to 0.988 and the RMSE decreased from 379.9 ㎥/s to 16.1 ㎥/s. The machine learning technique with NARX will contribute to the accurate prediction of flow rate with an unexpected extreme flood condition.

Hydrogeological characteristics of a seepage area of white leachate (백색침출수 용출지역의 수리지질학적 고찰)

  • Kim, Man-Il;Park, Young-Gyu;Kim, Eul-Young;Kim, Yang-Bin;Yong, Hwan-Ho;Ji, Won-Hyun
    • The Journal of Engineering Geology
    • /
    • v.20 no.4
    • /
    • pp.381-390
    • /
    • 2010
  • This study assessed the hydrogeological characteristics of a seepage area of white leachate. The geological characteristics of the leachate were determined by a surface survey, and an electrical resistivity survey and borehole image processing system (BIPS) were applied to estimate the distribution of discontinuities, to assess the geological structure of the seepage areas. Fluctuations in groundwater level within boreholes were measured during periods of precipitation in the dry and wet seasons. The results show that electrical resistivity is lower in the seepage section than in non-seepage sections. The distribution of fracture zones and limestone cavities was inferred from the logging data and BIPS data. Variations in groundwater level and groundwater recharge, related to rainfall events, show the direct effect of rainfall events during the rainy season. We obtained a strong relationship between seepage amount and rainfall (correlation coefficients of 0.83-0.97).

Development of an Integrated Inundation Analysis Model for Urban Flood Inundation Analysis (도시지역의 침수해석을 위한 통합침수해석모형의 개발)

  • Kim, Dong-Il;Son, Ah-Long;Son, In-Ho;Han, Kun-Yeun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.135-135
    • /
    • 2011
  • 지구온난화와 이상기후에 따라 최근 우리나라를 둘러싼 기후패턴의 변화가 가속화되고 있으며 한반도는 장마기간이 소강상태를 보이는 반면, 장마 후 국지성 집중호우가 증가하고 태풍이 내습하는 현상이 빈번해짐으로써 홍수에 대한 위험과 피해규모도 증가하고 있다. 특히 도시지역에서는 강우규모가 배수시스템의 용량을 초과하거나, 하천수위 상승으로 관로 내에 역류가 발생하는 등 우수 배제 기능을 제대로 수행하지 못할 경우 발생하는 지표침수로 인해 심각한 인명 및 재산피해가 발생하고 있다. 실제로 현재 홍수해석 및 홍수위험지도 작성시 내수시스템을 반영하지 않아 침수면적 및 범위의 오차가 존재하며 홍수위험지도 작성시 내수범람과 외수범람을 따로 고려하는 문제점이 있다. 따라서 도시 침수 해석시 내수시스템을 반영한 정확한 침수심 및 침수면적계산뿐만 아니라 이상기후에 대비한 복합적 요인으로 인한 침수해석이 필요하다. 따라서 본 연구에서는 하천해석을 위해 1차원 하천 해석 모형인 FLDWAV모형을 적용하고 가상의 제방 파제 시나리오를 통하여 외수범람 영향을 구하였으며, 배수시스템의 SWMM모형과 제내지에서 내수와 외수범람의 영향을 고려한 DEM기반의 2차원 범람해석을 연계한 Dual-Drainage모형에 대하여 외수범람 영향에 따른 흐름의 양상, 침수심, 침수위 등을 분석하였다. 개발한 모형에 대한 적용성을 검토하기 위하여 대구 신암5동 유역을 선정하였고 대상유역의 수치지도를 활용하여 정형 격자 20m 크기로 지형자료를 구성하였으며, 건물의 영향도 고려하기 위해 DEM에 건물자료를 합성하였다. 침수해석 결과 내수시스템의 영향을 고려하지 않을 때가 고려하였을 때 보다 Node(맨홀)에서의 재유입의 영향으로 인하여 최대 침수심이 더 높게 나왔으며 침수면적도 넓게 나타나는 것을 확인하였고, 기존의 홍수위험지도 작성시 외수침수와 내수침수를 구분하여 해석하였던 것을 본 연구에서 통합하여 외수범람의 영향을 고려한 통합침수해석을 실시하여 내수에서 발생할 수 있는 유출량과 내수시스템의 월류량 등에 대한 고려가 없는 외수침수만 해석시 보다 최대침수심이 더 높게 나타났으며 침수면적 또한 넓게 나타남을 알 수 있었다. 본 연구를 통해서 도시홍수, 돌발홍수 등의 발생시 정확한 도시 침수 해석이 가능하며 도시침수구역에 대한 적절한 예 경보 및 피난대책 수립에 활용될 수 있을 것으로 사료된다. 또한 국내의 홍수위험지도나 도시 침수해석과 연계하여 선행시간을 확보한 정확도 높은 홍수정보시스템 구축에 크게 기여할 것으로 판단된다.

  • PDF

A SYSTEM DYNAMICS MODEL OF FOOD GRAIN PRODUCTION IN KOREA (양곡생산(糧穀生産)의 동적(動的) 모델에 관(關)한 연구(硏究))

  • Lee, Chong Ho
    • Journal of Biosystems Engineering
    • /
    • v.8 no.1
    • /
    • pp.61-69
    • /
    • 1983
  • A system dynamic model was developed to predict food grain production under the dynamic consideration of the production circumstance and inputs such as farm population, investment on agriculture, arable land, extensive technology and weather. By using the model, the variation of the food grain production from 1978 to 2008 was examined. The results of the model output says it is desirable that the persistent and long-term program should be studied to get necessary food grain production under the variational inputs and circumstances.

  • PDF

Evaluation of Water Quality Characteristics in the Nakdong River using Statistical Analysis (통계분석을 이용한 낙동강유역의 수질변화 특성 조사)

  • Choi, Kil Yong;Im, Toe Hyo;Lee, Jae Woon;Cheon, Se Uk
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.11
    • /
    • pp.1157-1168
    • /
    • 2012
  • In this study, we assess changes in water quality trends over time based on certain control measurements in order to identify and analyze the cause of the trend in water quality. The current water pollution in the Nakdong River was analyzed, as it suggests that the significant changes in water quality have occurred in between 2006 and 2010. Based on monthly average data, we have examined for trends of the Nakdong River watershed in water temperature, Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Nitrogen (TN), and Total Phosphorus (TP). Moreover, we have investigated seasonal variation of water quality of sites within the Nakdong River Basin by implementing further analyses such as, Correlation Coefficient, Regression Analysis, Hierarchical Clustering Method, and Time Series Analysis on SPSS. Geology and topography of the watershed, controlled by various conditions such as, climate, vegetation, topography, soil, and rain medium, have been affected by the non-homogeneity. Our study suggests that such variables could possibly cause eutrophication problems in the river. One possible way to overcome this particular problem is to lay up a ship on the river by increasing the nasal flow measurement of the Nakdong River during rainy season. Moreover, the water management requires arranging the measurement of the flow in order to secure the river while the numerous construction projects need to be continuously observed. However, the water is not flowing tributary of the reason for the timing to be flowing in a natural state of river water and industrial water intake because agriculture. Therefore, ongoing research is needed in addition to configuration of all observations.

Spatio-temporal Variation Analysis of Physico-chemical Water Quality in the Yeongsan-River Watershed (영산강 수계의 이화학적 수질에 관한 시공간적 변이 분석)

  • Kang, Sun-Ah;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.1 s.115
    • /
    • pp.73-84
    • /
    • 2006
  • The objective of this study was to analyze long-term temporal trends of water chemistry and spatial heterogeneity for 10 sampling sites of the Yeongsan River watershed using water quality dataset during 1995 to 2004 (obtained from the Ministry of Environment, Korea). The water quality, based on multi-parameters of biological oxygen demand (BOD), chemical oxygen demand (COD), conductivity, dissolved oxygen (Do), total phosphorus (TP), total nitrogen (TN) and total suspended solids (TSS), largely varied depending on the sampling sites, seasons and years. Largest seasonal variabilities in most parameters occurred during the two months of July to August and these were closely associated with large spate of summmer monsoon rain. Conductivity, used as a key indicator for a ionic dilution during rainy season, and nutrients of TN and TP had an inverse function of precipitation (absolute r values> 0.32, P< 0.01, n= 119), whereas BOD and COD had no significant relations(P> 0.05, n= 119) with rainfall. Minimum values in conductivity, TN, and TP were observed during the summer monsoon, indicating an ionic and nutrient dilution of river water by the rainwater. In contrast, major inputs of total suspended solids (TSS) occurred during the period of summer monsoon. BOD values varied with seasons and the values was closely associated (r=0.592: P< 0.01) with COD, while variations of TN were had high correlations (r=0.529 : P< 0.01) with TP. Seasonal fluctuations of DO showed that maximum values were in the cold winter season and minimum values were in the summer seasons, indicating an inverse relation with water temperature. The spatial trend analyses of TP, TN, BOD, COD and TSS, except for conductivity, showed that the values were greater in the mid-river reach than in the headwater and down-river reaches. Conductivity was greater in the down-river sites than any other sites. Overall data of BOD, COD, and nutrients (TN, TP) showed that water quality was worst in the Site 4, compared to those of others sites. This was due to continuous effluents from the wastewater treatment plants within the urban area of Gwangju city. Based on the overall dataset, efficient water quality management is required in the urban area for better water quality.

A Study on Prioritization of HNS Management in Korean Waters (해상 위험·유해물질(HNS) 관리 우선순위 선정에 관한 연구)

  • Kim, Young Ryun;Kim, Tae Won;Son, Min Ho;Oh, Sangwoo;Lee, Moonjin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.6
    • /
    • pp.672-678
    • /
    • 2015
  • The types of hazardous and noxious substances (HNS) being transported by sea in Korea are at about 6,000, HNS transport volume accounts for 19% of total tonnage shipped in Korea, and the increase rate of seaborne HNS trade in Korea is 2.5 times higher than the average increase rate of the world seaborne HNS trade. Reflecting this trend, HNS spill incidents have been frequently reported in Korean waters, and there are increasing social demands to develop HNS management technology for the preparedness, response, post-treatment and restoration in relation to HNS spill incidents at sea. In this study, a risk-based HNS prioritization system was developed and an HNS risk database was built with evaluation indices such as sea transport volume, physicochemical properties, toxicities, persistency, and bioaccumulation. Risk scores for human health and marine environments were calculated by multiplying scores for toxicity and exposure. The top-20 substances in the list of HNS were tabulated, and Aniline was ranked first place, but it needs to be managed not by individuals but by HNS groups with similar score levels. Limitations were identified in obtaining data of chronic toxicity and marine ecotoxicity due to lack of testing data. It is necessary to study on marine ecotoxicological test in the near future. Moreover, the priority list of HNS is expected to be utilized in the development of HNS management technology and the relevant technologies, after the expert's review process and making up for the lack of test data in the current research results.

Analysis for water cycle change using SWAT model and water balance analysis depending on water reuse in urban area (SWAT모델과 물수지분석을 이용한 물재이용에 의한 도시물순환 변화 분석)

  • Kim, Young-Ran;Hwang, Seong-Hwan;Lee, Sung-Ok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.4
    • /
    • pp.447-457
    • /
    • 2015
  • Water cycle within the human civilization has become important with urbanization. To date, water cycle in the eco-system has been the focus in identifying the degree of water cycle in cities, but in practicality, water cycle within the human civilization system is taking on an increasing importance. While in recent years plans to reuse water have been implemented to restore water cycle in cities, the effect that such reuse has on the entire water cycle system has not been analyzed. The analysis on the effect that water reuse has on urban areas needs to be go beyond measuring the cost-savings and look at the changes brought about in the entire city's water cycle system. This study uses a SWAT model and water balance analysis to review the effects that water reuse has on changes occurring in the urban water cycle system by linking the water cycle within the eco-system with that within the human civilization system. The SWAT model to calculate the components of water cycle in the human civilization system showed that similar to measured data, the daily changes and accumulative data can be simulated. When the amount of water reuse increases in urban areas, the surface outflow, amount of sewer discharge and the discharged amount from sewage treatment plants decrease, leading to a change in water cycle within our human civilization system. The determinant coefficients for reduced surface outflow amount and reduced sewer discharge were 0.9164 and 0.9892, respectively, while the determinant coefficient for reduced discharge of sewage treatment plants was 0.9988. This indicates that with an increase in water reuse, surface flow, sewage and discharge from sewage treatment plants all saw a linear reduction.

Development of TANK_GS Model to Consider the Interaction between Surface Water and Groundwater (지표수-지하수 상호흐름을 고려한 TANK_GS 모형의 개발)

  • Lee, Woo-Seok;Chung, Eun-Sung;Kim, Sang-Ug;Lee, Kil-Seong
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.10
    • /
    • pp.893-909
    • /
    • 2010
  • The purpose of this study is to consider the interaction between surface water and groundwater in basin scale by developing TANK_GS model. The soil moisture structure of tank model with 3 tanks is improved to simulate the appropriate stream-aquifer interactions. Maximum likelihood method is applied to calibrate parameters with variance functions to deal with heteroscedasticity of residuals. The parameters of improved TANK_GS model and variance function are simultaneously estimated by Simulated Annealing method, a global optimization technique. The results of TANK-GE are compared to those of the SWMM-GE model which had been developed to consider the stream-aquifer interactions. The new TANK_GS model and SWMM-GE model are applied to Gapcheon basin, which belongs to Geum River basin. TANK_GS model showed better model performance compared to the original TANK model and characterized the relationship of stream-aquifer interactions as satisfactorily as the SWMM-GE model. The sustainable groundwater yield can be estimated for the regional water resources planning using the TANK_GS model

Analysis of Urban Inundation Considering Building Footprints Based on Dual-Drainage Scheme (건물의 영향을 고려한 이중배수체계기반 침수해석)

  • Lee, Jeong-Young;Jin, Gi-Ho;Ha, Sung-Ryong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.40-51
    • /
    • 2014
  • This study aims to investigate urban inundation considering building footprints based on dual-drainage scheme. For this purpose, LiDAR data is cultivated to generate two original data set in terms of DEM with $1{\times}1$ meter and building layer of the study drainage area in Seoul and then the building layer is overlapped as vector polygon with the mesh data with the same size as DEM. Then, terrain data for modeling were re-sampled to reduce resolution as $10{\times}10$ meters. As results, the simulated depth without considering building footprints has a tendency to underestimate the inundation depth compared to observed data analized by CCTV imagery. Otherwise, the simulation result considering building footprints revealed definitely higher fitness. The difference of inundation depth came from the variation of inundation volume which was relevant to inundation extent. If the building footprints are enlarged, the possible inundation depth is increased, which results in being inundation depth higher because hydrological conditions such as rainfall depth are conservational. Otherwise, according to comparison of inundation extents, there were no significant difference but the case of considering building footprint was revealed slightly higher fitness. Thus, it is concluded that the considering building footprint for inundation analysis of urban watershed should be required to improve simulation accuracy synthetically.