Hydrogeological characteristics of a seepage area of white leachate

백색침출수 용출지역의 수리지질학적 고찰

  • Kim, Man-Il (Office of Environmental Geology, Korea Rural Community and Agriculture Corporation) ;
  • Park, Young-Gyu (Office of Environmental Geology, Korea Rural Community and Agriculture Corporation) ;
  • Kim, Eul-Young (Office of Environmental Geology, Korea Rural Community and Agriculture Corporation) ;
  • Kim, Yang-Bin (Office of Environmental Geology, Korea Rural Community and Agriculture Corporation) ;
  • Yong, Hwan-Ho (Office of Environmental Geology, Korea Rural Community and Agriculture Corporation) ;
  • Ji, Won-Hyun (Mine Reclamation Corporation)
  • 김만일 (한국농어촌공사 환경지질처) ;
  • 박영규 (한국농어촌공사 환경지질처) ;
  • 김을영 (한국농어촌공사 환경지질처) ;
  • 김양빈 (한국농어촌공사 환경지질처) ;
  • 용환호 (한국농어촌공사 환경지질처) ;
  • 지원현 (한국광해관리공단)
  • Received : 2010.09.27
  • Accepted : 2010.12.07
  • Published : 2010.12.31

Abstract

This study assessed the hydrogeological characteristics of a seepage area of white leachate. The geological characteristics of the leachate were determined by a surface survey, and an electrical resistivity survey and borehole image processing system (BIPS) were applied to estimate the distribution of discontinuities, to assess the geological structure of the seepage areas. Fluctuations in groundwater level within boreholes were measured during periods of precipitation in the dry and wet seasons. The results show that electrical resistivity is lower in the seepage section than in non-seepage sections. The distribution of fracture zones and limestone cavities was inferred from the logging data and BIPS data. Variations in groundwater level and groundwater recharge, related to rainfall events, show the direct effect of rainfall events during the rainy season. We obtained a strong relationship between seepage amount and rainfall (correlation coefficients of 0.83-0.97).

본 연구는 백색침출수 용출구간에 대한 수리지질학적 특성을 파악하기 위한 목적으로 수행되었다. 이를 위하여 지표지질조사를 통해 지질특성을 분석하였으며, 백색침출수 용출구간의 지질구조를 파악하기 위한 전기비저항탐사와 시추공 공내촬영을 통해 암반의 불연속면 분포특성을 분석하였다. 연구지역 내 백색침출수 용출지점을 중심으로 갈수기와 풍수기로 구분하여 강우사상에 따른 지하수위 변동을 시추공별로 측정하였다. 이상의 연구결과에서 백색침출수 용출구간에서의 전기비저항 특성은 비용출구간에 비해 상대적으로 낮은 값으로 나타났으며, 이는 심부에 파쇄대 내지 석회암 공동대의 존재를 확인하였다. 이들 지역에서의 강우사상에 따른 지하수위 변동을 지하수 유형분석을 통해 분석한 결과, 강우가 직접적으로 지하수 함양에 영향을 주는 것으로 파악되었다. 또한 일평균 유출량과 강우량의 상관관계 분석에서 0.83~0.97로 높은 상관성을 갖는 것으로 나타났다.

Keywords

References

  1. 강동환, 권병혁, 유훈선, 김선옥, 2010, 일광 폐광산 갱내에서 유래된 산성광산배수의 중금속 유출특성, 지질공학, 20(1), 79-87.
  2. 강미아, 2007, 산성광산배수로 인한 환경오염도 조사, 지질공학, 17(1), 143-150.
  3. 국립지질조사소, 1965, 서벽리 지질도폭 설명서 1:50,000, 25p.
  4. 김경만, 허원, 백환조, 2008, 황산염환원균 고정화 담체를 이용한 산성광산배수 처리, 자원환경지질, 41(1), 57-62.
  5. 박용하, 서경원, 2005, 휴폐금속광산지역의 토양오염관리방안, 한국환경정책평가연구원, 정책보고서, KEI 2005 WO-03, 89p.
  6. 안주성, 임길재, 정영욱, 2009, 거풍 폐광산 폐기물 적치장 지사후 및 침출수 수질의 시기별 변화, 자원환경지질, 42(3), 207-216.
  7. 양성일, 강동환, 김태영, 정상용, 김민철, 2008, 달천 폐광산 지역에서 광미적재지와 기반암 지하수의 수질특성 연구, 자원환경지질, 41(1), 47-56.
  8. 용보영, 조동완, 정진웅, 임길재, 지상우, 안주성, 송호철, 2010, 광산배수 자연정화시설 내 버섯퇴비의 중금속 흡착능력 평가, 자원환경지질, 43(1), 13-20.
  9. 이민희, 이예선, 양민준, 김종성, 왕수균, 2009, 폐광산 주변 중금속 오염 농경지 토양 복원을 위한 석회 (CaO)와 석회암(CaCO3)의 안정화 효율 규명, 자원환경지질학회지, 41(2), 201-210.
  10. 이평구, 조호영, 염승준, 2004, 폐광산지역의 오염특성 조사와 평가를 위한 지구화학적 접근방법, 자원환경지질학회지, 37(1), 35-48.
  11. 정명채, 2004, Successive Alkalinity Producing System (SAPS)을 이용한 폐 석탄광의 산성광산폐수 처리, 대한환경공학회지, 26(11), 1204-1210.
  12. 지상우, 고주인, 강희태, 김재욱, 김선준, 2003, 광산배수 오염평가기준 도출에 관한 연구, 한국지하수토양환경학회 추계학술발표회, 382-385.
  13. 최승원, 장윤득, 기영훈, 김정진, 2010, 산화제 NaOC1와 H2O2를 이용한 광산배수 정화에 관한 연구, 자원환경지질, 43(1), 21-31.
  14. 한국수자원공사, 2004, 국가 지하수관측망 운영관리 최적화 방안 수립 연구, 266p.
  15. Brugam, R.B., Gastineau, J. and Ratcliff, E., 1996, The neutralization of acidic coal mine lakes by additions of natural organic matter: a mesocosm test, International Journal of Rock Mechanics and Mining, Science & Geomechanics Abstracts, 33, 324-352.
  16. Fiset, J.F., Zinck, J.M. and Nkinamubanzi, P.C., 2003, Chemical stabilization of metal hydroxide sludge, Proceedingof the X International Conference of Tailings and Mine Waste, Vail, CO, USA, AA Balkema, 329-332.
  17. Gazea, B., Adam, K. and Kontopoulos, A., 1996, A review of passive systems for the treatment of acid mine drainage, Minerals Engineering, 9, 23-42. https://doi.org/10.1016/0892-6875(95)00129-8
  18. Kevina B., Hallberg, D. and Johnson, B., 2005, Microbiology of a wetland ecosystem constructed to remediate mine drainage from a heavy metal mine, Science of Total Environment, 338, 53-66. https://doi.org/10.1016/j.scitotenv.2004.09.005
  19. Lindsay, W. L., 1979, Chemical equilibria in soils, John Wiley and Sons, New York, Chichester, 449p.
  20. Neculita, C.M. and Zagury, G.J., 2008, Biological treatment of highly contaminated acid mine drainage in batch reactors: long-term treatment and reactive mixture characterization, Journal of Hazardous Materials, 157, 358-366. https://doi.org/10.1016/j.jhazmat.2008.01.002
  21. Shelp, G. S., Chesworth, W. and Spiers, G., 1995, The amelioration of acid mine drainage by an in situ electrochemical method; Part 1: Employing scrap iron as the sacrificial anode. Applied Geochemistry; 10, 705-713. https://doi.org/10.1016/0883-2927(95)00055-0
  22. Shelp, G.S., Chesworth, W. and Spiers, G., 1996, The amelioration of acid mine drainage by an in situ electrochemical method; Part 2: Employing aluminium and zinc as sacrificial anodes, Applied Geochemistry, 11, 425-432. https://doi.org/10.1016/S0883-2927(96)00015-7
  23. Waybrant, K.R., Blowes, D.W. and Ptacek, C.J., 1998, Selection of reactive mixtures for use in permeable reactive walls for treatment on mine drainage, Environmental Science and Technology, 32, 1972-1979. https://doi.org/10.1021/es9703335