• Title/Summary/Keyword: 지탱가능한 인구수

Search Result 3, Processing Time 0.021 seconds

Trend and estimation of the ecological footprint from the consumption of bovine meat in Korea (우리나라 쇠고기 소비에 의한 생태발자국 추이와 예측)

  • Yeo, Min Ju;Kim, Yong Pyo
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.4
    • /
    • pp.280-295
    • /
    • 2016
  • Influences on the environment from the consumption of livestock have increased drastically during the last 50 years in Korea. Reduction of bovine meat consumption is one of the alternatives as sustainable food supply. The consumption of bovine meat and the ecological footprint (the sum of the cropland, grazing land, and carbon footprint) from the consumption of bovine meat have increased over 13 and 12 times over the last 50 years. Especially, the consumption of imported bovine meat and the ecological footprint from the consumption of imported bovine meat have increased significantly about 346 and 369 times over the last 40 years. If the consumption of bovine meat decreased by half in Korea in 2023, the ecological footprint from the consumption of bovine meat would be reduced by 40~65% depending on the scenarios. The supportable population number for the consumptions of environmental resources (food (crops, livestock, and fish), energy, forest, and built-up land) and the crops were 0.57~1.56 million and 3.42~6.83 million, respectively, depending on the scenarios and the nationality of the supported people.

An Assessment of Environmental Carrying Capacity by Analyzing the Emission and Concentration of Urban Atmospheric Pollutants (대기오염을 고려한 도시의 환경적 수용력 산정 연구)

  • Lee, Kwang-Ho;Jeong, Yeun-Woo
    • Land and Housing Review
    • /
    • v.2 no.4
    • /
    • pp.517-528
    • /
    • 2011
  • Indiscreet developments cause environmental problems in major cities of Seoul Metropolitan Area. Among the environmental problems, the air pollution leads the citizens' physical and economic damages. Therefore, it needs to predict how much air pollutant which is emitted from human activities can be carried by urban environment, then to examine the reasonable level of urban development This study assumed that the air pollution is represented differently by the amount of emission. With the assumption, the acceptable air pollutant emission which keeps the air quality under the environmental standard is estimated, then the proper population is calculated in the case of Gwacheon, Gyeonggi. The result is as follow: First, air pollution concentrations of CO, $NO_2$, $SO_2$ which are estimated by using IDW interpolation of GIS don't excess the air environmental standard. Second, the result of correlation analysis between air pollutant emission and air pollution concentration shows that CO and $NO_2$ has high correlationship with total source of pollution and linear source of pollution, and $SO_2$ with linear source of pollution. Third, the results of regression analysis show that the acceptable population is bigger that the real population in the case of CO, and with the estimation of $NO_2$ and $SO_2$, the current population in the urban center and boundaries where the residential and commerce land uses are concentrated is bigger than the acceptable population. The consequence of this study is that the estimation of carrying capacity can suggest the acceptable human activities which keep the air quality under the environmental standard. This can leads the sustainable urban development by control the human activities under the carrying capacity of urban environment.

Optimum Population Projection in Korea: An Environmental Perspective (환경 측면에서 한국의 적정인구 추계)

  • Jeong, Dae-Yuon
    • Korea journal of population studies
    • /
    • v.29 no.1
    • /
    • pp.269-292
    • /
    • 2006
  • The current environmental problem is global, and threatens the very existence of human beings. Many factors have been argued as the causes of environmental problem. The examples include anthroponcentric human perspective on nature, increase in the knowledge on nature, development of technology, economic growth and unequal distribution, and population increase, etc. The scholars who argues population increase have focused on over-population. However, the estimation of optimum population size has not been attempted in terms of environmental carrying capacity. In such a context, this paper aims at estimating optimum population size in South Korea in terms of environmental carrying capacity. The estimation was done from two approaches. One was based on the state of environment, the other was based on 'the desirable state of environment' Koreans expect. The former is termed an objective approach, while the latter is termed an approach based on social consensus. About 47.5 millions were estimated from the former approach, and 48.5 millions from the latter approach. However, optimum population size increase by 50.5 millions if government increase environmental budget to 2.00% among total budget. As such, different optimum population size is estimated according to the values of variables. The most significant variable determining optimum population size is environmental budget, and followed by supply of clean energy. The estimated optimum population size was based on the time-series data from 1993 to 2002. Therefore, time-series data collected from other years will result in different estimation model, and then different optimum population size will be estimated.