• Title/Summary/Keyword: 지진취약성

Search Result 170, Processing Time 0.027 seconds

Probabilistic Safety Analysis for Seismic Performance Evaluation of Bridges -Focused on Fragility Analysis using Capacity Spectrum Method- (교량의 내진성능 평가를 위한 확률적 지진안전성 분석 - 역량스펙트럼법을 이용한 지진취약도 분석을 중심으로-)

  • 이진학;김상훈
    • Computational Structural Engineering
    • /
    • v.17 no.2
    • /
    • pp.31-41
    • /
    • 2004
  • 몇 일 전 필자는 대전에 위치한 한 연구소에 근무하고 계신 분으로부터 지진취약도 분석에 관한 문의 전화를 받았다. 그분의 대학 후배가 지진취약도에 대한 연구를 하고 싶다는 내용이었다. 최근 필자는 그분 외에도 다른 분들과 함께 지진취약도 분석 및 이를 확장한 바람에 의한, 혹은 홍수에 의한 구조물의 확률적 안전성 분석에 관한 논의를 하곤 하였다. 현재까지 국내에서는 구조물의 취약도 분석에 대한 연구가 그다지 활발하지 않으나, 이에 대한 관심은 지속적으로 증가할 것으로 보여진다. 지진취약도를 한마디로 요약하면, "임의의 크기를 갖는 지진이 발생하였을 때, 구조물에 어느 규모 이상의 손상이 발생할 확률"을 의미하는 것으로, 구조물의 확률적 지진안전성으로 부를 수 있다. 예를 들어, "최대지반가속도가 0.1g인 지진이 발생하였을 때, 해당 구조물에 보수를 요하는 수준 이상의 손상이 발생할 확률이 30%이다"와 같은 정보를 지진취약도 곡선으로부터 읽을 수 있다. (중략)

Evaluation of seismic fragility models for cut-and-cover railway tunnels (개착식 철도 터널 구조물의 기존 지진취약도 모델 적합성 평가)

  • Yang, Seunghoon;Kwak, Dongyoup
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.1
    • /
    • pp.1-13
    • /
    • 2022
  • A weighted linear combination of seismic fragility models previously developed for cut-and-cover railway tunnels was presented and the appropriateness of the combined model was evaluated. The seismic fragility function is expressed in the form of a cumulative probability function of the lognormal distribution based on the peak ground acceleration. The model uncertainty can be reduced by combining models independently developed. Equal weight is applied to four models. The new seismic fragility function was developed for each damage level by determining the median and standard deviation, which are model metrics. Comparing fragility curves developed for other bored tunnels, cut-and-cover tunnels for high-speed railway system have a similar level of fragility. We postulated that this is due to the high seismic design standard for high-speed railway tunnel.

Seismic Fragility Analysis of PSC Containment Building by Nonlinear Analysis (비선형 지진해석에 의한 PSC 격납건물의 지진취약도 분석)

  • Choi, In-Kil;Ahn, Seong-Moon;Choun, Young-Sun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.1 s.47
    • /
    • pp.63-74
    • /
    • 2006
  • The seismic fragility analysis method has been used as a quantitative seismic safety evaluation method for the NPP(Nuclear Power Plant) structures and equipments. The seismic fragility analysis gives a realistic seismic capacity excluding the convertism included in the design stage. The conservatism is considered as the probabilistic parameters related to the response and capacity in the seismic fragility analysis. In this study, the displacement based seismic fragility analysis method was proposed based on the nonlinear dynamic analysis results. In this study, the seismic safety of the prestressed concrete containment building of KSNP(Korean Standard Nuclear Power Plant) was evaluated for the scenario earthquakes, neat-fault, far-fault, design earthquake and probability based scenario earthquake, which can be occurred in the NPP sites.

Seismic Fragility Assessment Method for RC Bridges in Korea using a Representative Bridge (대표 교량을 이용한 국내 철근콘크리트 교량의 지진취약성 분석 방법)

  • An, HyoJoon;Jeong, Seong-Hoon;Shin, Soobong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.6
    • /
    • pp.417-423
    • /
    • 2019
  • In this investigation, a set of seismic fragility curves for RC bridges in Korea is derived by considering variations of the representative analytical model. The dimensions and specifications of the model are determined, based on statistical analysis of the inventory of RC bridges in Korea. Variations of important modeling parameters such as material properties, size of structural members, and dimension of the bridge are defined based on statistical studies of the bridges. The OpenSees program is utilized for the analysis to represent the inelastic behavior of RC members. A systematic approach is developed to perform a large volume of inelastic dynamic analysis, in which continuous variation of the modeling parameters are programmed to appropriately represent the characteristics of RC bridges in Korea.

방사성폐기물 처분동굴의 지진 취약도 해석

  • 장승필;서정문
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05d
    • /
    • pp.229-234
    • /
    • 1996
  • 방사성폐기물 영구처분장과 같은 대규모 지하 원자력시설의 운영중 안전성 평가를 위하여 지하 구조물의 지진 취약도 해석기법을 제안하였다. 지상구조물에 대해 적용되고 있는 Zion 방법을 모체로 하였으며 지하구조물의 특성 및 기술현황을 반영하였다. 지하구조물의 파괴양상은 구조물의 크기 및 형태, 수평 지압의 크기, 암반의 특성 등 많은 요인에 의해 달라진다. 처분동굴의 개념설계 결과에 대한 지진취약도 분석결과 수평지압계수의 영향이 매우 크며, 벽체부 또는 천정부에서의 숏크리트의 압축파괴가 가장 취약한 것으로 밝혀졌다.

  • PDF

Fragility Curve Evaluation of Reinforced Concrete Shear Wall Structures according to Various Nonlinear Seismic Analysis Methods (다양한 비선형지진해석방법에 따른 철근콘크리트 전단벽 구조물의 취약도곡선 평가)

  • Jang, Dong-Hui;Song, Jong-Keol;Kang, Sung-Lib;Park, Chang-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.1-12
    • /
    • 2011
  • Seismic fragility analysis has been developed to evaluate the seismic performance of existing nuclear power plants, but now its applicability has been extended to buildings and bridges. In general, the seismic fragility curves are evaluated from the nonlinear time-history analysis (THA) using many earthquake ground motions. Seismic fragility analysis using the nonlinear THA requires a time consuming process of structural modeling and analysis. To overcome this shortcoming of the nonlinear THA, simplified methods such as the displacement coefficient method (DCM) and the capacity spectrum method (CSM) are used for the seismic fragility analysis. In order to evaluate the accuracy of the seismic fragility curve calculated by the DCM and the CSM, the seismic fragility curves of a reinforced concrete shear wall structure calculated by the DCM and CSM are compared with those calculated by the nonlinear THA. In order to construct a numerical fragility curve, 190 artificially generated ground motions corresponding to the design spectrum and the methodology proposed by Shinozuka et al. are used.

Fragility Analysis of RC Moment Resisting Framewith Masonry Infill Walls (비내력벽을 가진 RC모멘트저항골조의 취약도 해석)

  • Ko, Hyun;Park, Yong-Koo;Choi, Byeong-Tae;Kim, Min-Gyun;Lee, Ui-Hyun;Lee, Dong-Guen
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.442-445
    • /
    • 2009
  • 지진에 대한 건축물의 확률적 성능평가에 대해서는 지진하중에 대한 건축물의 손상확률 또는 파괴확률을 나타내는 지진취약도 함수를 작성하여 대상 건축물에 대한 지진위험도를 평가하는 방법을 이용하고 있으며 이에 대한 많은 연구가 이루어지고 있다. 본 연구에서는 지진하중과 구조물 재료특성의 불확실성을 고려하고 대상 건축물의 지진취약도 해석을 통하여 비내력벽의 유무에 따른 건축물의 지진거동 및 내진성능을 평가하였다. 비내력벽을 보편화된 모형화 방법인 등가의 대각 압축 스트럿으로 고려하여 비내력벽의 유무에 따른 저층 철근콘크리트 건축물을 모형화하였으며 지진하중의 강도는 유효최대지반가속도를 이용하여 각 건축물에 대하여 지진취약도를 작성하였다. 취약도해석 결과로 연약층을 가지고 있는 건축물의 경우는 손상확률이 골조만 있는 경우보다 크며 동일한 해석모델의 경우에도 해석방법에 따라서 취약도 곡선의 형태가 다름을 알 수 있었다.

  • PDF

Seismic Fragility Evaluation of Surface Facility Structures in Intermediate-Low Level Radioactive Waste Repository (중.저준위 방사성폐기물 처분장의 지상시설에 대한 지진 취약도 평가)

  • Park, Jun-Hee;Kim, Min-Kyu;Choi, In-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.1
    • /
    • pp.57-64
    • /
    • 2012
  • Since a seismic exceeding design load can result in exposing radioactive material during disposal process of radioactive wastes, the repository should be designed with enough seismic margin. In this paper, a seismic fragility analysis was performed to evaluate the seismic capacity of surface facility structures. According to the analysis results, since inspection & store facility and radioactive waste facility have a rectangle geometry, the seismic capacity was differently presented about 23%~43% according to the axis of structures. The HCLPF capacity of inspection & store facility and radioactive waste facility was 0.52g and 0.93g, respectively. And it was observed that seismic capacity of radioactive waste facility was similar to that of a containment for nuclear power plants.

Seismic Fragility Analysis of Curved Bridge under High Frequency Earthquakes (고주파 지진에 의한 곡선 교량의 지진 취약도 분석)

  • Jeon, Juntai;Ju, Bu-Seog;Son, Hoyoung
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.4
    • /
    • pp.806-812
    • /
    • 2020
  • Purpose: This is aimed to evaluate the seismic fragility of curved bridge structure with I-shape girder subjected to 12 high frequency ground motions based on Gyeongju earthquake. Method: The linear elastic finite element model of curved bridge with I-Shape cross section was constructed and them linear elastic time history analyses were performed using the 12 artificial ground motions. Result: It was found that displacement response(LS1, LS2) was failed after PGA 0.1g and the stress response also showed failure after PGA 0.2g. Conclusion: The curved bridge with I-shape girder was sensitive to high frequency earthquakes.

Assessment of Earthquake Induced Landslide Susceptibility with Variation of Groundwater Level (지하수위 변화에 따른 지진 유발 산사태의 취약섬 분석)

  • Kim, Ji-Seok;Park, Hyuek-Jin;Lee, Jung-Hyun
    • Economic and Environmental Geology
    • /
    • v.44 no.4
    • /
    • pp.289-302
    • /
    • 2011
  • Since the frequency of the earthquake occurrence in Korean peninsular is continuously increasing, the possibility that massive landslides are triggered by earthquake is also growing in Korea. Previously, the landslide is known to be induced by large magnitude earthquake, whose magnitude is larger than 6.0. However, the landslide can be induced by only small magnitude earthquake, especially in the fully saturated soil. Therefore, the susceptibility of landslide caused by small magnitude earthquake in fully saturated soil is analyzed in this study. For that, the topographical and geological characteristics of the site were obtained and managed by GIS software. In the procedure of the study, slope angle, cohesion, friction angle, unit weight of soil were obtained and constructed as a spatial database layer. Combining these data sets in a dynamic model based on Newmark's displacement analysis, the landslide displacements were estimated in each grid cell. In order to check out the possibility of the earthquake induced landslides, the level of the groundwater table is varied from dry to 80% saturated soil. In addition, in order to analyze the effect of the magnitude of earthquake and distance to epicenter, four different earthquakes epicenters were considered in the study area.