• Title/Summary/Keyword: 지점 부모멘트

Search Result 27, Processing Time 0.021 seconds

A Study on the New Computational Methods for the Negative Moment at Column Support in PSC Flat Plate (PSC 연속 평판슬래브의 지점 부모멘트 산정법 연구)

  • 박선규;이범식;한만엽
    • Computational Structural Engineering
    • /
    • v.11 no.4
    • /
    • pp.177-186
    • /
    • 1998
  • PSC 연속 평판슬래브의 설계는 부정정 평판슬래브에 대한 정확한 해석의 어려움 등으로 등가보이론과 등가골조이론에 의한 근사식을 수정없이 사용하거나 컴퓨터를 이용한 해석에 의존하고 있으나 해석결과를 간단하게 정확히 평가할 수 있는 기법은 없는 실정이다. 또한 PSC 연속 평판슬래브의 부재력은 긴장재의 곡선형태에 따라 변하므로 실제 설계시 PS 긴장재의 정확한 곡선식을 찾는 것은 매우 중요하다. 본 연구에서는 비부착 PSC 연속 평판슬래브를 설계할 때 기둥과 기둥을 연결하는 PS 긴장재의 기하학적 곡선형태를 결정하는 방법과, PS 긴장력으로 인해 발생하는 평판슬래브의 기둥부 휨모멘트에 대하여 판이론을 기초로 간편하게 계산하는 방법을 제안하였다. 본 연구에서 제안된 이론으로 계산된 PSC 연속 평판슬래브에 대한 해석값과 유한요소 해석에 의한 지점 부모멘트를 비교 검토하여, 본 논문에서 제시한 기법의 타당성을 입증하였다. 따라서 본 연구는 설계자에게 컴퓨터의 해석결과를 간단하고 정확하게 검증할 수 있도록 하였다.

  • PDF

A Study of the Tendon Profile of a PSC Continuous Beam Able to Resist the Negative Bending Moment of Continuous Intergirders (거더 연속부의 부모멘트 제어에 효과적인 PSC 연속보의 텐던 배치에 관한 연구)

  • Kim, Eui Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.6
    • /
    • pp.617-625
    • /
    • 2021
  • The problems associated with the continuous method of a domestically improved prestressed concrete (PSC) girder and the bending moment of a continuous tendon were studied. Based on the results, a continuous tendon model was proposed that can resist the negative bending moment of an intergirder. This model lowers the anchorage of the continuous tendon as far as possible under the girder, and extends the tendon section arranged under the girder. This method reduces the PS's bending moment in the middle of the span, but maximizes it in the intergirder. This continuous tendon model can offer a suitable method for continuity before manufacturing a composite, which requires a higher design bending moment in the intergirder than in the middle of the span.

Control of Deck Cracking at Interior Supports of Continuous PSC-Beam Bridge (연속 PSC-Beam 교량의 지점부 균열제어)

  • 곽효경;서영재;정찬묵;박영하
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.2
    • /
    • pp.201-214
    • /
    • 1999
  • 이 연구는 2경간 연속 PSC-Beam 교량의 경간 내측 지지점의 바닥판에서 발생할 수 있는 균열의 제어에 관한 내용을 다루고 있다. PSC-Beam 교량은 주형인 PSC-Beam을 거치시킨후 바닥판을 현장타설 콘크리트로 시공된다. 이로 인하여 주형 콘크리트와 바닥판 콘크리트의 시간의존적 거동차이, 주형의 연속화에 따른 거동 등에 의하여 부모멘트가 가장 크게 걸리는 지점부에서 균열이 쉽게 발생된다. 따라서 이 논문에서는 2경간 연속 PSC-Beam 교량의 연속화에 따른 거동을 수치적 방법으로 해석하여 지점부 바닥판의 균열거동이 예측되었다. 이를 위하여 해석모델에는 콘크리트의 시간의존적 현상인 크리프와 건조수축이 고려되었으며, 2경간 연속 PSC-Beam 교량의 거동에 영향을 나타내는 여러 가지 인자가 고려되어 해석되었다. 끝으로 콘크리트의 모델식을 이용하여 지점부 균열을 억제하기 위한 현장에서 관리가능한 방안이 수치적으로 제안되었다.

  • PDF

The Development of Improved Construction and Design Method on Continuous Preflex Girder Bridge (연속 프리플렉스 거더교의 개선된 시공법과 설계식의 개발)

  • Koo, Min Se;Park, Young Je;Kim, Hun Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.2 s.75
    • /
    • pp.183-194
    • /
    • 2005
  • In the previous construction method of continuous preflex composite girder bridge, we raised the inner support, and cast slab concrete innegative moment section, then lowered it to introduce compressive force in the slab. There were a few problems in the process such as the time required in raising the support and the bending of the camber. Therefore, this paper represents an improved construction method of continuous preflex composite girder by only moving downward the inner and outer supports to figure out problems in previous construction method. This paper proposes a design formula to find a proper cross section of preflex girder.

Performance Evaluation of FRP-Concrete Composite Deck for Cable Stayed Bridges (사장교용 FRP-콘크리트 합성바닥판의 부모멘트부 성능평가)

  • Kim, Sung-Tae;Park, Sung-Yong;Cho, Keun-Hee;Cho, Jeong-Rae;Kim, Byung-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.49-50
    • /
    • 2009
  • We developed a new FRP-concrete composite deck applied to cable-stayed bridges, and verified the feasibility of design concept for negative moment zone in case of composition between this deck system and girder.

  • PDF

Load carrying capacity Evaluation Considering the Structural Characteristics of Bridge Bearing (교량받침의 거동특성을 고려한 내하력 평가)

  • Park, Kil-Hyun;Yang, Seung-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.209-216
    • /
    • 2003
  • Load carrying capacity evaluation is very important element in maintenance of bridge. There are several reasons about differences in deflection caused by loading test and structural analysis. Especially when we do modeling uniformly without considering real structural characteristics of support, this problem can be more deepened. This computes modification factor high so we may evaluate the load carrying capacity more than fact. In this study, we do structural analysis nearing real structure with negative bending moment of support that computes considering structural characteristics of support, and then evaluate load carrying capacity.

Simplified Analysis of Superstructure Section Considering Diaphragm and Optimum Design Conditions for ILM Bridge (다이아프램이 고려된 ILM 교량 상부단면의 단순해석 및 최적설계조건)

  • Lee, Hwan-Woo;Park, Yong-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.459-467
    • /
    • 2014
  • ILM(Incremental Launching Method) bridges pass both the middle of spans and supports during launching. The launching noses are used to minimize the maximum positive moments and negative moments of the superstructure occurring during launching for ILM bridges. In this study, the simplified analysis formula considering diaphragm to calculate the bending moment that occurs during launching is induced and analyzes the optimum design conditions considering diaphragm. The accuracy of the proposed simplified analysis formular compared to the MIDAS Civil has an error of less than 5%. There is a difference up to 13% in the moment between the cases when the diaphragm is considered and is not. In addition, the criteria for deciding the unit weight of equivalent cross section and average stiffness value of equivalent cross section that can be applied to the simplified analysis formula is proposed. In this study, an effective way to optimize the launching nose is proposed that the optimum design is taken in the condition of minimizing the negative moment because of the mechanic characteristic of ILM bridges.

A Study on the Flexural Behavior of Plate Girder Bridge Decks Using a Macro-Element (매크로 요소를 사용한 판형교 바닥판의 휨거동 해석)

  • 최진유;양기재;박남회;강영종
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.1
    • /
    • pp.13-24
    • /
    • 2000
  • Current specification prescribes that upper and lower reinforcement mat is required in the same amount to resist negative and positive moment in bridge decks. But the negative moment is much smaller than positive moment because the actual behavior of decks consists of local deflection of slab and global deflection of girder. From this study, the analysis method based on harmonic analysis and slope-deflection method was developed and verified by finite element method. The negative moment, obtained from this method, were smaller than those computed based on the KHBDC specifications as much as 40∼50% in the middle of bridge. The amount of reduction of the design negative moment was shown herein to be dependent on variable parameters as shape factor(S/L) of slab, relative stiffness ratio of girder and deck slab, and so on. This investigations indicate that the upper reinforcement mat to resist negative moment can be removed. But further experimental study is required to consider durability and serviceability. From this new design concept, the construction expense can be reduced and the problem of decreasing durability resulting from corrosion of upper reinforcement steel settled.

  • PDF

Comparison and Review of Design Codes for Moment Redistribution (모멘트 재분배에 관한 각 국의 설계기준 비교.검토)

  • Cheon, Ju-Hyoun;Park, Jae-Geun;Lee, Sang-Cheol;Oh, Myung-Seok;Shin, Hyun-Mock
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.133-136
    • /
    • 2008
  • Moment redistribution problem that reflects plasticity concept is foundation of limit state design and it has been interested to design engineers and researchers for a long time, because it enables the reasonable estimation of strength of structures through amount of reinforcement control about negative moment in support. Many researchers find that moment redistribution closely related to ductility of degree of structure and there are a lot of difficulties in achieving the reliable experimental results because of a lot of restriction of experiment. So, studies are achieved for indirect estimate methods about ductility ability of structures. Each design standards limits that the degree of redistribution of bending moment is based on the measurement of ductility of structure, and it shows conservative results. In this study, with these results, present the basic data for reasonable strength estimation methods and allowed moment redistribution of reinforced concrete continuous beams.

  • PDF

A Study on the ALFD Design of Rolled Beams (압연형교의 ALFD설계에 관한 연구)

  • Chung, Kyung-Hee;Kim, Jin-Sung;Yang, Seung-Ie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.91-97
    • /
    • 2003
  • The maximum moment may occur at interior supports of continuous bridges. If the bigger moment is applied on them, a local yielding at interior supports may occur. They may show plastic behaviors, and the moment will be redistributed. The strength design, L.F.D., redistributes 10% of the negative moment which is obtained from the elastic analysis. However, A.L.F.D method computes the moment which is redistributed. This moment is called automoment. The moment-rotation curve is needed to find automoment. In this paper moment-rotation curve for compact sections suggested from AASHTO Guide Specifications is used to find automoment. Based on A.L.F.D. limit states specification method, a three-span continuous bridge is designed.