The chemical composition of the arsenopyrite Ib adjoining“triple mutual contact”arsenopyrite + pyrite + hexagonal pyrrhotite may serve as a useful geothermometer in Stage II. In this study it corresponds to temperature T=33$0^{\circ}C$ and f( $S_2$)=10$^{-9.5}$ atm. And the pyrite-hexagonal pyrrhotite buffer curve indicates the probable range of the two variables; T= 315∼345$^{\circ}C$, and f( $S_2$)=10$^{-1}$0.5/∼10$^{-9}$ atm. The present antimony-bearing arsenopyrite (arsenopyrite Ic) is characterized by relatively high content of antimony, ranging from 4.95 to 8.91 percent Sb by weight and excess of iron and deficiency of anions are evident. Such a high antimonian arsenopyrite has never been known within single grain. But being the high content of antimony as in the arsenopyrite Ic, it does not serve as a geothermometer. The results of microprobe analyses for four pairs of asenopyrite and sphalerite in Stage III indicate the temperature range from 310 to 34$0^{\circ}C$, and sulphur fugacity range from 10$^{-10}$ ∼10$^{-9}$ atm. These values seem to correspond with those inferred from the Fe-As-S system.m..
Proceedings of the Korean Society of Soil and Groundwater Environment Conference
/
2003.09a
/
pp.520-523
/
2003
강원도 지역의 대표적인 탄산용출수에 대한 수리지구화학적 연구를 통하여 심부 지열 저장지의 온도와 심부환경을 추정하였다. 탄산용출수는 공통적으로 약산성의 pH와 높은 이온함량으로 특징되지만, 화학적으로는 Na-HCO$_3$형, Ca-Na-HCO$_3$형, 그리고 Ca-HCO$_3$형으로 뚜렷이 구분된다. 심부에서 생성된 탄산용출수가 지표로 상승하는 도중에 수반된 지표수 혼합차이로 인해 이런 화학조성의 차이가 유발된 것으로 판단된다. Na-HCO$_3$형 탄산수는 화학 조성상 ‘mature water’의 특징을 보여주는 반면, 다른 두 유형의 탄산수들은 ‘immature water’에 해당하였다. Na-HCO$_3$ 형 탄산수에 대하여 실리카, Na-K 및 Na-K-Ca 지온계를 적용한 결과, 약 l15-157도의 심부저장지 온도가 산출되었으며, 이 결과는 다성분 평형계를 이용한 추정 온도 (약 140-160도)와도 잘 일치하였다. 반면, Ca-HCO$_3$ 형 탄산수들은 지표수와의 혼합 때문에 상대적으로 낮고 넓은 범위의 추정 온도 (약 60-130도)를 나타내었다. 따라서 연구지역 내 탄산용출수의 심부저장지 온도는 Na-HCO$_3$형에 대해서만 타당하게 적용될 수 있으며, 약 140-160도일 것으로 추정된다.
The Precambrian granitic gneisses are widely distributed in the Danyang-Yecheon area, eastern part of Korea, where the Ryeongnam massif borders the Ogcheon fold belt. They are composed of migmatitic, biotite granitic, garnet-bearing and granoblastic granitic gneisses. The common joint sets of the granitic gneiss are NE and NS directions, which are probably related to the effects of Daebo orogeny and Bulgugsa disturbance, respectively. Mineral assemblages of the banded gneiss xenolith in the garnet-bearing granitic gneiss are quartz-plagioc1ase-biotite-mus-covite-orthoclase and quartz-plagioc1ase-biotite-garnet, belonging to the amphibolite facies. The granoblastic granitic gneiss is felsic, metaluminous, and granitic, and shows subalkaline trend. The garnet-biotite geothermometry of garnet-bearing granitic gneiss yields 640$^{\circ}$-708$^{\circ}C$ at pressure of 4 kb.
Precambrian metamorphic rocks of the Gapyeong-Cheongpyeong area consist of banded gneiss, augen gneiss, leucocratic gneiss, quartz schist and quartzite, together with minor intercalations of serpentinite, amphibolite and marble. Mineral assemblages of meta-sedimentary rocks are classified into three types: sillimanite-free; sillimanite-bearing; and sillimanite+K-feldspar-bearing assemblages. Compositions of metamorphic phases depend on the type of mineral assemblages. In particular, the Ca contents of plagioclase and garnet are high in sillimanite-free assemblges. Kyanite occurs in three samples, and coexists with sillimanite in one sample. The presence of kyanite indicates that metamorphic rocks of the study area have experienced the Barrovian type metamorphism. Peak metamorphic conditions estimated from various geothermobarometers and phase equilibria are 618-674$^{\circ}C$ and 6.5${\pm}$2.0 kbar for sillimanite-free assemblages, and 701-740$^{\circ}C$ and 4.4${\pm}$0.8 kbar for sillimanite-bearing assemblages, respectively. Furthermore, a clockwise P-T-time path is deduced for the study area, based on the following observations: (1) the polymorphic transition of kyanite to sillimanite, (2) the occurrence of sillimanite and K-feldspar belonging to the upper amphibolite facies, and finally (3) the retrograde metamorphism characterized by muscovite-, chlorite-, and actinolite-bearing assemblages.
It is require to construct geothermal database to develop geothermal energy as renewable energy policy. It must be consist of geologic data, borehole data and geophysical data for geothermal database. In aspect of geology, there are included the distribution of geology, structural geology, geological time, rock name, density of rock, porosity, thermal diffusivity, specific capacity and thermal conductivity In order to calculate the heat general ion, it is needed to analysis the radioactivity elements as U, Th and K of rock. In aspect of borehole data, there are included temperature of depth, surface temperature and geothermal gradient And also there is geotherrnornetry using chemical components of groundwater as Na Ca, K and $SiO_2$. In aspect of geophysical data, there are some thematic map as booger gravity anomaly data and magnetic survey data and etc. In addition, it is important to descript the distribution of hot spring and water temperature.
Granitic rocks in the southeastern Gyeongsang Basin can be classified into three groups. The group I contains various mafic microgranular enclave (MME) and/or mafic clot which implies magma mixing or mingling. The group II show the feature of shallow depth emplacement at low pressure, and the group III is characterized by A-type granite implying extensional tectonic environment. Mineralogical characteristics of the granitic rocks have showed systematic variations in perthite exsolution temperatures and biotite compositions according to their rock facies, although they do not show any distinctively different trend in geography and textures or rock facies. Amphiboles from Group I are calcic-amphibole and they were formed at 0.4 ~ 2.8 kb in pressure based on the amphibole geobarometry. Amphiboles from group ill are riebeckite, whileas amphiboles were not observed in Group II. The chemical composition of biotite defined in clusters showing a continuous spectrum between group I to ferric-annite of group ill. The composition of plagioclase generally plotted in albite, oligoclase, and andesine area without any distinctive differences among their geography or rock facies. The exsolution temperatures by perthite geothermometry are calculated as $300~400^{\circ}C$ in Group I, and 500~$600^{\circ}C$ in equigranular granite of group II and alkali-feldspar granite of group III.
The migmatitic gneiss in the Odesan Gneiss Complex has small amount of quartzite, amphibolite and marble and the Kuryong Group which contact with migmatitic gneiss unconformitly, also contains some amphibolite. Preview studies of this area had regarded that the amphibolites contact with marble had been produced by metasomatism from the pelitic and calcareous sediments mixtures, but the amphibolite is reinterpreted as igneous origin. $SiO_2$ content of the amphibolite is 45.9~52.7 wt%, which corresponds to basaltic composition. MgO content has narrow range (4.6~6.87 wt%) and major and trace element are plotted against MgO,$TiO_2, P_2O_5$, Hf, Zr are reduced and Cr and Ni are increased their content with increasing MgO. This phenomenon indicates that the basaltic magma as the protolith of the amphibolite had frationated with the crystallization of the pyroxene and/or olivine. REE pattern has smoothly decrease from LREE to HREE. Eu/Eu(0.83~1.19) show the flat Eu anomaly, which indicate small fractional crystallization of plagioclase. HREE is enriched in the garnet-bearing amphibolites. Several discrimination diagram for the basaltic magma show that the amphibolite of the study area is originated tholeiitic basaltic magma indicating continental rift environment. Due to determine the metamorphic condition garnet-hornblende geothermometry and hornblende-plagioclase geobarometry are used. Peak metamorphic temperature range of the amphibolite $788~870^{\circ}C$ and is deduced toward the northeastern part. The calculated temperature from the amphibolite has slightly higher than the temperature of the metapelites but the trend of metamorphic grade which decrease from western to eastern part progradly is similar to each other. The metamorphic pressure calculated by garnet- hornblede-plagioclase geobarometry is 4~5kb. But ilmenite-plagioclase pair enclosed in garnet show 8 kb at $700^{\circ}C$ by garnet-ilmenite-rutile-plagioclase geobarometery. The zonal profile of garnet in sample 84 shows the bell-shape profile, which grossular content decreases whereas pyrope content increases progressively. This means that the amphibolite has undergone the clockwise P-T-t path which is shown in the migmatitic gneiss of the Odesan Gneiss Complex.
Suck Jong Han;Se-Yeong Hamm;Ig Hwan Sung;Byeong Dae Lee;Byong Wook Cho;Myong Hee Cho
The Journal of Engineering Geology
/
v.9
no.3
/
pp.207-225
/
1999
Twenty water samples (eleven groundwater and nine geothermal water samples) were collected to elucidate hydrogeochemical characteristics of the groundwater and geothermal water in the Dongrae hot-spring area and its vicinity. Major and minor elements were analyzed for ground and geothermal water samples. Physicochemical properties of the groundwater and the geothermal water were examined and chemical composition of the two waters were compared. Factor and correlation analyses were carried out to simplify the physicochemical data into grouping some factors and to find interaction between them. The groundwaters belong to $Ca-HCO_3$ type, while the geothermal waters belong to Na-Cl type. The Na and Cl concentrations in the Dongrae hot-spring area are higher than those of other granite areas in South Korea. The Na/Cl weight ratio ranges from 0.7 to 1.3 for the geothermal waters. On the phase stability diagram groundwaters fall effectively in the field of stability of kaolinite, while geothermal waters fall in the stability field of microcline or kolinite depending on the chemical composition system. Based on the Na-K, Na-K-Ca and Na-K-Ca-Mg geothermometers, the geothermal reservoir is estimated to have equilibrium temperature between 115 and $145^{\circ}C$.
World-class magnesite deposits are developed in the Dashiqiao mineralized district of the Jiao-Liao-Ji Belt in China. This belt extends to the northern side of the Korean Peninsula and hosts major magnesite deposits in the Dancheon region of North Korea. Magnesite ores from the Pailou deposits in the Dashiqiao district is classified into pure magnetite, chlorite-magnetite, chlorite-talc-magnetite, and dolomite groups depending on the constituent minerals. According to the result of petrographic study, magnesite was formed by the alteration of dolomite, and, talc, chlorite, and apatite were produced as late-stage alteration minerals that replaced the magnesite. Fluid inclusions observed in magnesite are a liquid-type inclusion, with a homogenization temperature of 121-250 ℃ and a salinity of 1.7-22.4 wt% NaCl equiv. The chlorite geothermometer, indicating the temperature of hydrothermal alteration, is 137~293 ℃, slightly higher than the homogenization temperature of fluid inclusions, and the pressure is calculated to be less than 3.2 kb. For magnesite mineralization in the study area, the initially formed-dolomite was subjected to replacement by Mg-rich fluid to form a magnesite ore body, and then it was enriched through regional metamorphism and hydrothermal alteration. It seems that altered minerals such as talc were crystallized by Si and Al-rich late-stage hydrothermal fluids. These results are similar to the genetic environments of the Daeheung deposit, a representative magnesite deposit in North Korea, and it is believed that the two deposits went through a similar geological and ore genetic process of magnesite mineralization.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.