DOI QR코드

DOI QR Code

중국 다스챠오벨트 팰로우 마그네사이트 광상의 생성환경 및 북한 대흥 광상과의 비교

Genetic Environment of the Pailou Magnesite Deposit in Dashiqiao Belt, China, and Its Comparison with the Daeheung Deposit in North Korea

  • 임헌경 (공주대학교 지질환경과학과) ;
  • 신동복 (공주대학교 지질환경과학과) ;
  • 유봉철 (한국지질자원연구원 자원탐사개발연구센터)
  • Im, Heonkyung (Department of Geoenvironmental Sciences, Kongju National University) ;
  • Shin, Dongbok (Department of Geoenvironmental Sciences, Kongju National University) ;
  • Yoo, Bong-chul (Korea Institute of Geoscience and Mineral Resources)
  • 투고 : 2021.12.21
  • 심사 : 2021.12.23
  • 발행 : 2021.12.28

초록

중국 쟈오랴오지(Jiao-Liao-Ji) 벨트에 속한 다스챠오(Dashiqiao) 광화대에는 세계적 규모의 마그네사이트 광상들이 발달하며, 한반도 북측으로 연장되어 북한 단천지역 주요 마그네사이트 광상도 이에 속한다. 중국 다스챠오 광화대 팰로우(Pailou) 광상의 마그네사이트 광석은 구성광물에 따라 순수한 마그네사이트, 녹니석-마그네사이트, 녹니석-활석-마그네사이트, 그리고 돌로마이트 그룹으로 구분된다. 암석기재 연구결과 마그네사이트는 돌로마이트가 변질작용을 받아 형성되었음을 보여주며, 이를 다시 교대하는 후기 변질광물로 활석, 녹니석, 인회석 등이 산출된다. 마그네사이트내에 관찰되는 유체포유물은 액상포유물로서 균일화온도는 121~250 ℃, 염농도는 1.7~22.4 wt% NaCl equiv.의 범위를 보여준다. 열수변질작용의 온도를 지시하는 녹니석 지온계는 137~293 ℃로서 유체포유물의 균일화온도에 비해 약간 높으며, 이들의 생성압력은 3.2 kb 이하로 나타난다. 연구지역 마그네사이트 광화작용은 초기 형성된 돌로마이트가 Mg가 부화된 유체에 의한 교대작용을 받아 마그네사이트 광체를 형성하고, 이후 광역변성작용과 열수변질작용을 거치며 부화되였으며, Si 및 Al이 부화된 후기 열수에 의해 활석 등의 변질광물이 정출된 것으로 보인다. 이러한 결과는 북한의 대표적인 대흥 마그네사이트 광상의 정출환경과 유사하며 두 광상이 상호 유사한 지질광상학적 생성과정을 거치며 광화작용이 진행된 것으로 여겨진다.

World-class magnesite deposits are developed in the Dashiqiao mineralized district of the Jiao-Liao-Ji Belt in China. This belt extends to the northern side of the Korean Peninsula and hosts major magnesite deposits in the Dancheon region of North Korea. Magnesite ores from the Pailou deposits in the Dashiqiao district is classified into pure magnetite, chlorite-magnetite, chlorite-talc-magnetite, and dolomite groups depending on the constituent minerals. According to the result of petrographic study, magnesite was formed by the alteration of dolomite, and, talc, chlorite, and apatite were produced as late-stage alteration minerals that replaced the magnesite. Fluid inclusions observed in magnesite are a liquid-type inclusion, with a homogenization temperature of 121-250 ℃ and a salinity of 1.7-22.4 wt% NaCl equiv. The chlorite geothermometer, indicating the temperature of hydrothermal alteration, is 137~293 ℃, slightly higher than the homogenization temperature of fluid inclusions, and the pressure is calculated to be less than 3.2 kb. For magnesite mineralization in the study area, the initially formed-dolomite was subjected to replacement by Mg-rich fluid to form a magnesite ore body, and then it was enriched through regional metamorphism and hydrothermal alteration. It seems that altered minerals such as talc were crystallized by Si and Al-rich late-stage hydrothermal fluids. These results are similar to the genetic environments of the Daeheung deposit, a representative magnesite deposit in North Korea, and it is believed that the two deposits went through a similar geological and ore genetic process of magnesite mineralization.

키워드

과제정보

이 연구는 정부(과학기술정보통신부) 재원으로 국가과학기술연구회(No.CRC-15-06-KIGAM)와 한국연구재단(No.2019R1A2C1085334)의 지원을 받아 수행된 연구임. 본 논문을 세심하게 검토하고 유익한 비평을 주신 심사위원들께 감사드린다.

참고문헌

  1. Aharon, P. (1988) A stable-isotope study of magnesites from the rum jungle uranium field, Australia - implications for the origin of strata-bound massive magnesites. Chem. Geol., v.69, p.127-145. doi: 10.1016/0009-2541(88)90164-7
  2. Cathelineau, M. and Nieva, D. (1985) A chlorite solid solution geothermometer the Los Azufres (Mexico) geothermal system. Contrib. Mineral. Petrol., v.91, p.235-244. doi: 10.1007/BF00413350
  3. Chen, C., Lu, A., Cai, K. and Zhai, Y. (2002) Sedimentary characteristics of Mg-rich carbonate formations and minerogenic fluids of magnesite and talc occurrences in early Proterozoic in eastern Liaoning Province, China. Sci. China, v.45, p.84-92. doi: 10.1007/BF02932210
  4. Chen, C.X., Jiang, S.Y., Cai, K.Q. and Ma, B. (2003) Metallogenic conditions of magnesite and talc deposits in early Proterozoic Mg-rich carbonate formations, eastern Liaoning province. Mineral Deposits, v.22, p.166-176. https://doi.org/10.3969/j.issn.0258-7106.2003.02.008
  5. Chen, R. and Wang, Y. (1994) The evolution and metallogenesis of early Proterozoic palaeorift in eastern Liaoning and southern Jilin provinces. In: Precambrian Geology and Tectonics in China. Seismological Publishing House, Beijing, p.186-200.
  6. Choi, B.S., Gang, M.S., Shin, Y.H., Kim, S.G., Ryu, D.M., Joo, J.G., Ri, J.C., Park, Y.W. and Shin, C.J. (2011) A series of Joseon geology, 8. Industrial publishing house, Pyongyang.
  7. Dong, A., Zhu, X.K., Li, S.Z., Kendall, B., Wang, Y. and Gao, Z. (2016) Genesis of a giant Paleoproterozoic strata-bound magnesite deposit: constraints from Mg isotopes. Precam. Res., v.281, p.673-683. doi: 10.1016/j.precamres.2016.06.020
  8. Driesner, T. and Heinrich, C.A. (2007) The system H2O-NaCl. Part I: Correlation formulae for phase relations in temperature-pressure-composition space from 0 to 1000 ℃, 0 to 5000 bar, and 0 to 1 XNaCl. Geochim. Cosmochim. Acta, v.71, p.4880-4901. doi: 10.1016/j.gca.2006.01.033
  9. Fernandez-Nieto, C., Torres-Ruiz, J., Subias Perez, I., Fanlo Gonzalez, I. and Gonzalez Lopez, J.M. (2003) Genesis of Mg-Fe carbonates from the Sierra Menera magnesite-siderite deposits, Northeast Spain: evidence from fluid inclusions, trace elements, rare earth elements, and stable isotope data. Econ. Geol., v.98, p.1413-1426. doi: 10.2113/gsecongeo.98.7.1413
  10. Hart, C.J., Goldfarb, R.J., Qiu, Y., Snee, L., Miller, L.D. and Miller, M.L. (2002) Gold deposits of the northern margin of the North China Craton: multiple late Paleozoic-Mesozoic mineralizing events. Miner. Deposita, v.37, p.326-351. doi: 10.1007/s00126-001-0239-2
  11. Henjes-Kunst, F., Prochaska, W., Niedermayr, A., Sullivan, N. and Baxter, E. (2014) Sm-Nd dating of hydrothermal carbonate formation: an example from the Breitenau magnesite deposit (Styria, Austria). Chem. Geol., v.387, p.184-201. doi: 10.1016/j.chemgeo.2014.07.025
  12. Hey, M.H. (1954) A new review of the chlorites. Mineral. Mag. v.30, p.277-292. doi: 10.1180/minmag.1954.030.224.01
  13. Jeon, G.B., Park, H.W., Kim, J.N., Yang, J.H., Ri, S.R., Jo, I.W., Gang, I.S., Kim, Y.N., Ri, Y.S., Kim, G.C., Rim, D.S., Park, W., Han, R.Y., Ri, W.R., Kim, Y.M., Kim, J.R., Jo, I.W., Park, S.C., Kim, S.S., Choi, W.J., Ryu, J.M., Ri, M.I., Oh, H.M., Rim, G.N., Park, C.S., Kim, J.H., Oh, I.T., Kim, M.G., Yoon, D.S., Yang, J.H., Gang, H.G. and Kim, H. (2011) Geology of Joseon. Sci. Tech. Publish. House, Pyongyang, 442p.
  14. Jiang, S., Chen, C., Chen, J., Jiang, J., Dai, B. and Ni, P. (2004) Geochemistry and genetic model for the giant magnesite deposits in eastern Liaoning Province, China. Act Petrol. Sinica, v.20, p.765-772. https://doi.org/10.3321/j.issn:1000-0569.2004.04.001
  15. Jiang, Y.H., Jiang, S.Y., Zhao, K.D., Ni, P., Ling, H.F. and Liu, D.Y. (2005) SHRIMP U-Pb zircon dating for lamprophyre from Liaodong Peninsula: Constraints on the initial time of Mesozoic lithosphere thinning beneath eastern China. Chin. Sci. Bull. v.50, p.2612-2620. doi: 10.1360/982005-373
  16. KIGAM(Korea Institute of Geoscience and Mineral Resources), 2021, Mineral commodity supply and demand. 264p.
  17. Kilias, S.P., Pozo, M., Bustillo, M., Stamatakis, M.G. and Calvo, J.P. (2006) Origin of the rubian carbonate-hosted magnesite deposit, Galicia, NW Spain: mineralogical, REE, fluid inclusion and isotope evidence. Mineral. Deposita, v.41, p.713-733. doi: 10.1007/s00126-006-0075-5
  18. Kim, Y.M., Han, B.S., Park, I.S., Um, H.Y., Paik, R.J., Jeong, S.I., Ri, M.C., Joo, Y.J., Kim, M.O., Oh, H.S., Koh, D.S., Jeon, G.B., Kim, J.G., Ri, S.R., Gang, S.Y., Ri, W.R., Han, R.Y., Yang, S.B., Kim, R.H., Kim, Y.N., Gang, H.G., Kim, G.R., Kim, C.W., Han, B.J., Ri, D., Seo, W.S., Kim, Y.H., Choi, W.J., Shin, Y.W., Jang, J.S., Hyun, Y.S., Han, C.S., Kim, J.H., Kim, H.S., Kim, J.R., Jo, I.W., Jeon, J.A., Kim, H.O., Kim, R.S., Hong, T.R., Park, I.S., Oh, S.A., Yoon, B.J. and Kim, S.I. (1988) Geology and Undergraound Resources. Edu. Book Publish. House, Pyongyang, 667p.
  19. Kodera, P. and Radvanec, M. (2002) Comparative mineralogical and fluid inclusion study of the Hnust'a-Mutnik talc-magnesite and Mikova-Jedl'ovec magnesite deposit (Western Carpathians, Slovakia). Boletim Paranaense de Geociencias, v.50, p.131-150. doi: 10.5380/GEO.V50I0.4165
  20. Lee G.J., Shin, D.B., Lee, S.Y., Koh, S.M., Lee, B.H., Yu, B.U., Yoo, B.C. (2021) Ore genesis and tectonic implication of the Daeheung-Ryongyang magnesite deposits in the East Jiao-LiaoJi Belt, North Korea. Lithos, 400-401C, 106402. DOI: 10.1016/j.lithos.2021.106402.
  21. Li, S., Yang, Z. and Liu, Y. (1998) Stratification of metamorphic belts and its genesis in the Liaohe Group. Chin. Sci. Bull., v.43, p.430-434. doi: 10.1007/bf02883726
  22. Li, S.Z., Zhao, G.C., Sun, M., Han, Z.Z., Luo, Y., Hao, D.F. and Xia, X.P. (2006) Are the south and north Liaohe groups of the north China craton different exotic terranes? Nd isotope constraints. Gondwana Res., v.9, p.198-208. doi: 10.1016/j.gr.2005.06.011
  23. Liu, J., Liu, Y., Chen, H., Sha, D. and Wang, H. (1997) The inner zone of the Liaoji Paleorift: its early structural styles and structural evolution. J. Asian Earth Sci., v.15, p.19-31. doi: 10.1016/S0743-9547(96)00077-3
  24. Lu, S., Zhao, G., Wang, H. and Hao, G. (2008) Precambrian metamorphic basement and sedimentary cover of the North China Craton: A review. Precam. Res., v.160, p.77-93. doi: 10.1016/j.precamres.2007.04.017
  25. Luo, Y., Sun, M., Zhao, G.C., Ayers, J.C., Li, S.Z., Xia, X.P. and Zhang, J.H. (2008) A comparison of U.Pb and Hf isotopic compositions of detrital zircons from the North and South Liaohe Group: constraints on the evolution of the Jiao-Liao-Ji Belt, North China Craton. Precam. Res., v.163, p.279-306. doi: 10.1016/j.precamres.2008.01.002
  26. Luo, Y., Sun, M., Zhao, G.C., Li, S.Z., Xu, P., Ye, K. and Xia, X.P. (2004) LA-ICP-MS U-Pb zircon ages of the Liaohe Group in the Eastern Block of the North China Craton: constraints on the evolution of the Jiao-Liao- Ji Belt. Precam. Res., v.134, p.349-371. doi: 10.1016/j.precamres.2004.07.002
  27. Melezhik, V.A., Fallick, A.E., Medvedev, P.V. and Makarikhin, V.V. (2001) Paleoproterozoic magnesite: lithological and isotopic evidence for playa/sabkha environments. Sedimentology, v.48, p.379-397. doi: 10.1046/j.1365-3091.2001.00369.x
  28. Misch, D., Pluch, H., Mali, H., Ebner, F. and Huang, H. (2018) Genesis of giant Early Proterozoic magnesite and related talc deposits in the Mafeng area, Liaoning Province, NE China. J. Asian Earth Sci., v.160, p.1-12. doi: 10.1016/j.jseaes.2018.04.005
  29. Roedder, E. (1984) Fluid inclusions. Reviews in Mineralogy, v.12, Mineral. Soc. America, 646p.
  30. Tam, P.Y., Zhao, G.C., Zhou, X., Sun, M., Guo, J., Li, S., Yin, C., Wu, M. and He, Y. (2012) Metamorphic P.T path and implications of highpressure pelitic granulites from the Jiaobei massif in the Jiao-Liao-Ji Belt, North China Craton. Gondwana Res., v.22, p.104-117. doi: 10.1016/j.gr.2011.09.006
  31. Tang, H.S., Chen, Y.J., Santosh, M., Zhong, H., Wu, G. and Lai, Y. (2013) C-O isotope geochemistry of the Dashiqiao magnesite belt, North China Craton: implications for the great oxidation event and ore genesis. Geol. J., v.48, p.467-483. doi: 10.1002/gj.2486
  32. The Ministry of Land and Resources of China (2001) Reporting the land and resources of China in 2000. Geological Publishing House: Beijing.
  33. Tu, G. (1996) The discussion on some CO2 problems. Earth Sci. Front., v.3, p.53-62.
  34. Veizer, J., Ala, D., Azmy,K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G.A.F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T., Korte, C., Pawallek, F., Podlaha, O.G. and Strauss, H. (1999) 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem. Geol., v.161, p.59-88. doi: 10.1016/S0009-2541(99)00081-9
  35. Velasco, F., Pesquera, A., Arce, R. and Olmedo, F. (1987) A contribution to the ore genesis of the magnesite deposit of Eugui, Navarra (Spain). Mineral. Deposita, v.22, p.33-41. doi: 10.1007/BF00204241
  36. Wan, Y.S., Song, B., Liu, D.Y., Wilde, S.A., Wu, J.S., Shi, Y.R., Yin, X.Y. and Zhou, H.Y. (2006) SHRIMP U-Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton: evidence for a major Late Palaeoproterozoic tectonothermal event. Precam. Res., v.149, p.249-271. doi: 10.1016/j.precamres.2006.06.006
  37. Yang, J.H., Wu, F.Y. and Wilde, S.A. (2003) A review of the geodynamic setting of large-scale Late Mesozoic gold mineralization in the North China Craton: an association with lithospheric thinning. Ore Geol. Rev., v.23, p.125-152. doi: 0.1016/S0169-1368(03)00033-7 https://doi.org/10.1016/S0169-1368(03)00033-7
  38. Zadeh, A.M.A., Ebner, F. and Jiang, S.Y. (2015) Mineralogical, geochemical, fluid inclusion and isotope study of Hohentauern/Sunk sparry magnesite deposit (Eastern Alps/Austria): implications for a metasomatic genetic model. Mineral. Petrol., v.109, p.555-575. doi: 10.1007/s00710-015-0386-2
  39. Zhang, Q.S. and Yang, Z.S. (1988) Early crust and mineral deposits of Liaodong Peninsula, China. Geological Publishing House, Beijing.