• Title/Summary/Keyword: 지역모델

Search Result 5,246, Processing Time 0.036 seconds

Prediction of Acer pictum subsp. mono Distribution using Bioclimatic Predictor Based on SSP Scenario Detailed Data (SSP 시나리오 상세화 자료 기반 생태기후지수를 활용한 고로쇠나무 분포 예측)

  • Kim, Whee-Moon;Kim, Chaeyoung;Cho, Jaepil;Hur, Jina;Song, Wonkyong
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.3
    • /
    • pp.163-173
    • /
    • 2022
  • Climate change is a key factor that greatly influences changes in the biological seasons and geographical distribution of species. In the ecological field, the BioClimatic predictor (BioClim), which is most related to the physiological characteristics of organisms, is used for vulnerability assessment. However, BioClim values are not provided other than the future period climate average values for each GCM for the Shared Socio-economic Pathways (SSPs) scenario. In this study, BioClim data suitable for domestic conditions was produced using 1 km resolution SSPs scenario detailed data produced by Rural Development Administration, and based on the data, a species distribution model was applied to mainly grow in southern, Gyeongsangbuk-do, Gangwon-do and humid regions. Appropriate habitat distributions were predicted every 30 years for the base years (1981 - 2010) and future years (2011 - 2100) of the Acer pictum subsp. mono. Acer pictum subsp. mono appearance data were collected from a total of 819 points through the national natural environment survey data. In order to improve the performance of the MaxEnt model, the parameters of the model (LQH-1.5) were optimized, and 7 detailed biolicm indices and 5 topographical indices were applied to the MaxEnt model. Drainage, Annual Precipitation (Bio12), and Slope significantly contributed to the distribution of Acer pictum subsp. mono in Korea. As a result of reflecting the growth characteristics that favor moist and fertile soil, the influence of climatic factors was not significant. Accordingly, in the base year, the suitable habitat for a high level of Acer pictum subsp. mono is 3.41% of the area of Korea, and in the near future (2011 - 2040) and far future (2071 - 2100), SSP1-2.6 accounts for 0.01% and 0.02%, gradually decreasing. However, in SSP5-8.5, it was 0.01% and 0.72%, respectively, showing a tendency to decrease in the near future compared to the base year, but to gradually increase toward the far future. This study confirms the future distribution of vegetation that is more easily adapted to climate change, and has significance as a basic study that can be used for future forest restoration of climate change-adapted species.

Detection of Site Environment and Estimation of Stand Yield in Mixed Forests Using National Forest Inventory (국가산림자원조사를 이용한 혼효림의 입지환경 탐색 및 임분수확량 추정)

  • Seongyeop Jeong;Jongsu Yim;Sunjung Lee;Jungeun Song;Hyokeun Park;JungBin Lee;Kyujin Yeom;Yeongmo Son
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.1
    • /
    • pp.83-92
    • /
    • 2023
  • This study was established to investigate the site environment of mixed forests in Korea and to estimate the growth and yield of stands using national forest resources inventory data. The growth of mixed forests was derived by applying the Chapman-Richards model with diameter at breast height (DBH), height, and cross-sectional area at breast height (BA), and the yield of mixed forests was derived by applying stepwise regression analysis with factors such as cross-sectional area at breast height, site index (SI), age, and standing tree density per ha. Mixed forests were found to be growing in various locations. By climate zone, more than half of them were distributed in the temperate central region. By altitude, about 62% were distributed at 101-400 m. The fitness indexes (FI) for the growth model of mixed forests, which is the independent variable of stand age, were 0.32 for the DBH estimation, 0.22 for the height estimation, and 0.18 for the basal area at breast height estimation, which were somewhat low. However, considering the graph and residual between the estimated and measured values of the estimation equation, the use of this estimation model is not expected to cause any particular problems. The yield prediction model of mixed forests was derived as follows: Stand volume =-162.6859+6.3434 ∙ BA+9.9214 ∙ SI+0.7271 ∙ Age, which is a step- by-step input of basal area at breast height (BA), site index (SI), and age among several growth factors, and the determination coefficient (R2) of the equation was about 96%. Using our optimal growth and yield prediction model, a makeshift stand yield table was created. This table of mixed forests was also used to derive the rotation of the highest production in volume.

Development of Design Elements of Rehabilitation for Individuals with Developmental Disabilities Based on Cultural Convergence of Lifelong Education for Individuals with Disabilities: Reflect Basic Related Fields such as Rehabilitation Science and Special Education as Centripetal Points (장애인평생교육 문화융합(cultural convergence) 기반의 발달장애 재활 설계 요소 개발: 재활과학-특수교육 기초 유관 분야 구심점)

  • Kim, Young-Jun;Han, Seung-A
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.427-434
    • /
    • 2022
  • This study aims to develop design elements for cultural convergence between rehabilitation for individuals with developmental disabilities and lifelong education for individuals with disabilities, which is a key area in the practical support system for independent life support for individuals with developmental disabilities. As for the research method, a procedure for conducting FGI by forming two teams for professors majoring in special education and rehabilitation science was formed. The research was presented in three upper categories (universal cultural convergence elements, field-centered cultural convergence elements, and policy-centered cultural convergence elements) that should be designed for cultural convergence between rehabilitation for individuals with developmental disabilities and lifelong education for individuals with disabilities. In addition, subcategories were specifically composed for each upper category. First, as a universal cultural element, "open creative convergence" was presented in principle, which can be explained as a principle of exploring and practicing the validity of convergence between related fields for rehabilitation for individuals with developmental disabilities and lifelong education for individuals with disabilities. Second, field-centered cultural factors included development of joint practice model between fields of rehabilitation science and special education, subject matter education knowledge and skills, teaching and learning methods, learning career roadmaps, employment and job career development roadmaps, and the formation of an independent life development history certification system. Third, as policy-centered cultural elements, the formation of a curriculum integration composition system between local related institutions, the establishment of a qualification development path for coordinator-professional teacher-type personnel, and the organizational systematization between school-center types were presented. The study concluded that independent life support for individuals with developmental disabilities should not only be guaranteed for the entire life of adulthood, but also a lifelong education for individuals with disabilities based rehabilitation support system for individuals with developmental disabilities should be established through cultural convergence.

The Accuracy Evaluation of Digital Elevation Models for Forest Areas Produced Under Different Filtering Conditions of Airborne LiDAR Raw Data (항공 LiDAR 원자료 필터링 조건에 따른 산림지역 수치표고모형 정확도 평가)

  • Cho, Seungwan;Choi, Hyung Tae;Park, Joowon
    • Journal of agriculture & life science
    • /
    • v.50 no.3
    • /
    • pp.1-11
    • /
    • 2016
  • With increasing interest, there have been studies on LiDAR(Light Detection And Ranging)-based DEM(Digital Elevation Model) to acquire three dimensional topographic information. For producing LiDAR DEM with better accuracy, Filtering process is crucial, where only surface reflected LiDAR points are left to construct DEM while non-surface reflected LiDAR points need to be removed from the raw LiDAR data. In particular, the changes of input values for filtering algorithm-constructing parameters are supposed to produce different products. Therefore, this study is aimed to contribute to better understanding the effects of the changes of the levels of GroundFilter Algrothm's Mean parameter(GFmn) embedded in FUSION software on the accuracy of the LiDAR DEM products, using LiDAR data collected for Hwacheon, Yangju, Gyeongsan and Jangheung watershed experimental area. The effect of GFmn level changes on the products' accuracy is estimated by measuring and comparing the residuals between the elevations at the same locations of a field and different GFmn level-produced LiDAR DEM sample points. In order to test whether there are any differences among the five GFmn levels; 1, 3, 5, 7 and 9, One-way ANOVA is conducted. In result of One-way ANOVA test, it is found that the change in GFmn level significantly affects the accuracy (F-value: 4.915, p<0.01). After finding significance of the GFmn level effect, Tukey HSD test is also conducted as a Post hoc test for grouping levels by the significant differences. In result, GFmn levels are divided into two subsets ('7, 5, 9, 3' vs. '1'). From the observation of the residuals of each individual level, it is possible to say that LiDAR DEM is generated most accurately when GFmn is given as 7. Through this study, the most desirable parameter value can be suggested to produce filtered LiDAR DEM data which can provide the most accurate elevation information.

Statistical Analysis of Amylose and Protein Content in Breeding Line Rice Germplasm Collected from East Asian Countries Based on Near-infrared reflectance spectroscopy (근적외선분광분석에 의한 육성계통 벼 유전자원의 아밀로스 및 단백질 성분함량에 관한 통계분석)

  • Oh, Sejong;Choi, Yu Mi;Yoon, Hyemyeong;Lee, Sukyeung;Lee, Myung Chul;Shin, Myoung-Jae;Yoo, Eunae;Hyun, Do Yoon;Chae, Byungsoo
    • Korean Journal of Breeding Science
    • /
    • v.51 no.4
    • /
    • pp.298-317
    • /
    • 2019
  • A statistical analysis of 9,771 non-glutinous rice in breeding line germplasm collected from Korea (2,836), China (2,136), Japan (1,219), and the Philippines (1,213) was conducted using normal distribution, variability index value (VIV), analysis of variation (ANOVA) and Ducan's multiple range test (DMRT) based on the data obtained from NIRS analysis. According to the normal distribution, the average protein content was 7.9%, and non-glutinous rice ranging over 10% amylose had 23.6% average content. Most resources were between 5.3 and 10.5% in protein content, and 15.7 and 31.5% in amylose content. The VIV was 0.54 for protein, and 0.83 for amylose. The average amylose content was 25.18%, 24.54%, 22.08%, and 21.47% in Filipino, Chinese, Korean, and Japanese resources, respectively, wheereas the average protein content was found to be 8.19%, 7.79%, 7.58%, and 7.42% in Filipino, Chinese, Korean, and Japanese resources, respectively. The ANOVA of amylose and protein content showed significant differences at the level of 0.01. The F-test value was 412.2 for amylose content, and 108.4 for protein when compared with the critical value of 3.78. The DMRT of amylose and protein content showed significant differences (p<0.01) among resources from different countries. The Filipino resources had the highest level of amylose and protein content, whereas; the lowest level of amylose and protein content were found in Japanese when compared with resources of other origins. These results are recommended as helpful materials in the field of breeding.

Development of Cloud Detection Method Considering Radiometric Characteristics of Satellite Imagery (위성영상의 방사적 특성을 고려한 구름 탐지 방법 개발)

  • Won-Woo Seo;Hongki Kang;Wansang Yoon;Pyung-Chae Lim;Sooahm Rhee;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1211-1224
    • /
    • 2023
  • Clouds cause many difficult problems in observing land surface phenomena using optical satellites, such as national land observation, disaster response, and change detection. In addition, the presence of clouds affects not only the image processing stage but also the final data quality, so it is necessary to identify and remove them. Therefore, in this study, we developed a new cloud detection technique that automatically performs a series of processes to search and extract the pixels closest to the spectral pattern of clouds in satellite images, select the optimal threshold, and produce a cloud mask based on the threshold. The cloud detection technique largely consists of three steps. In the first step, the process of converting the Digital Number (DN) unit image into top-of-atmosphere reflectance units was performed. In the second step, preprocessing such as Hue-Value-Saturation (HSV) transformation, triangle thresholding, and maximum likelihood classification was applied using the top of the atmosphere reflectance image, and the threshold for generating the initial cloud mask was determined for each image. In the third post-processing step, the noise included in the initial cloud mask created was removed and the cloud boundaries and interior were improved. As experimental data for cloud detection, CAS500-1 L2G images acquired in the Korean Peninsula from April to November, which show the diversity of spatial and seasonal distribution of clouds, were used. To verify the performance of the proposed method, the results generated by a simple thresholding method were compared. As a result of the experiment, compared to the existing method, the proposed method was able to detect clouds more accurately by considering the radiometric characteristics of each image through the preprocessing process. In addition, the results showed that the influence of bright objects (panel roofs, concrete roads, sand, etc.) other than cloud objects was minimized. The proposed method showed more than 30% improved results(F1-score) compared to the existing method but showed limitations in certain images containing snow.

Classification of Carbon-Based Global Marine Eco-Provinces Using Remote Sensing Data and K-Means Clustering (K-Means Clustering 기법과 원격탐사 자료를 활용한 탄소기반 글로벌 해양 생태구역 분류)

  • Young Jun Kim;Dukwon Bae;Jungho Im ;Sihun Jung;Minki Choo;Daehyeon Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.1043-1060
    • /
    • 2023
  • An acceleration of climate change in recent years has led to increased attention towards 'blue carbon' which refers to the carbon captured by the ocean. However, our comprehension of marine ecosystems is still incomplete. This study classified and analyzed global marine eco-provinces using k-means clustering considering carbon cycling. We utilized five input variables during the past 20 years (2001-2020): Carbon-based Productivity Model (CbPM) Net Primary Production (NPP), particulate inorganic and organic carbon (PIC and POC), sea surface salinity (SSS), and sea surface temperature (SST). A total of nine eco-provinces were classified through an optimization process, and the spatial distribution and environmental characteristics of each province were analyzed. Among them, five provinces showed characteristics of open oceans, while four provinces reflected characteristics of coastal and high-latitude regions. Furthermore, a qualitative comparison was conducted with previous studies regarding marine ecological zones to provide a detailed analysis of the features of nine eco-provinces considering carbon cycling. Finally, we examined the changes in nine eco-provinces for four periods in the past (2001-2005, 2006-2010, 2011-2015, and 2016-2020). Rapid changes in coastal ecosystems were observed, and especially, significant decreases in the eco-provinces having higher productivity by large freshwater inflow were identified. Our findings can serve as valuable reference material for marine ecosystem classification and coastal management, with consideration of carbon cycling and ongoing climate changes. The findings can also be employed in the development of guidelines for the systematic management of vulnerable coastal regions to climate change.

Factors and Elements for Cross-border Entrepreneurial Migration: An Exploratory Study of Global Startups in South Korea (델파이 기법과 AHP를 이용한 글로벌 창업이주 요인 탐색 연구: 국내 인바운드 사례를 중심으로)

  • Choi, Hwa-joon;Kim, Tae-yong;Lee, Jungwoo
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.17 no.4
    • /
    • pp.31-43
    • /
    • 2022
  • Startups are recognized as the vitality of the economy, and countries are competing to attract competitive overseas entrepreneurs and startups to their own startup ecosystem. In this global trend, entrepreneurs cross the border without hesitation, expecting abundant available resources and a startup friendly environment. Despite the increasing frequency of start-up migration between countries, studies related to this are very rare. Therefore, this study has chosen the cross-border migration of startups between countries as a research topic, and those who have been involved in the cross-border entrepreneurial migration to South Korea as a research sample. This study consists of two stages. The first research stage hires a Delphi method to collect expert opinions and find major factors related to the global startup migration. Drawing on the prior literature on the regional startup ecosystem at the national level, this stage is to conduct expert interviews in order to discover underlying factors and subfactors important for global migration of startups. The second stage measures the importance of the factors and subfactors using the AHP model. The priorities of factors and factors were identified hiring the overseas entrepreneurs who moved to Korea as the AHP survey samples. The results of this study suggest some interesting implications. First, a group of entrepreneurs with nomadic tendencies was found in the trend of global migration of entrepreneurs. They had already started their own businesses with the same business ideas in multiple countries before settling down in Korea. Second, important unique factors and subfactors in the context of global start-up migration were identified. A good example is the government's support package, including start-up visas. Third, it was possible to know the priority of the factors and subfactors that influence the global migration of startups This study is meaningful in that it preemptively conducted exploratory research focusing on a relatively new phenomenon of global startup migration, which recently catches attention in the global startup ecosystem. At the same time, it has a limitation in that it is difficult to generalize the meanings found in this study because the research was conducted based on the case of South Korea

A Comparative Study on Factors Affecting Satisfaction by Travel Purpose for Urban Demand Response Transport Service: Focusing on Sejong Shucle (도심형 수요응답 교통서비스의 통행목적별 만족도 영향요인 비교연구: 세종특별자치시 셔클(Shucle)을 중심으로)

  • Wonchul Kim;Woo Jin Han;Juntae Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.2
    • /
    • pp.132-141
    • /
    • 2024
  • In this study, the differences in user satisfaction and the variables influencing the satisfaction with demand response transport (DRT) by travel purpose were compared. The purpose of DRT travel was divided into commuting/school and shopping/leisure travel. A survey conducted on 'Shucle' users in Sejong City was used for the analysis and the least absolute shrinkage and selection operator (LASSO) regression analysis was applied to minimize the overfitting problems of the multilinear model. The results of the analysis confirmed the possibility that the introduction of the DRT service could eliminate the blind spot in the existing public transportation, reduce the use of private cars, encourage low-carbon and public transportation revitalization policies, and provide optimal transportation services to people who exhibit intermittent travel behaviors (e.g., elderly people, housewives, etc.). In addition, factors such as the waiting time after calling a DRT, travel time after boarding the DRT, convenience of using the DRT app, punctuality of expected departure/arrival time, and location of pickup and drop-off points were the common factors that positively influenced the satisfaction of users of the DRT services during their commuting/school and shopping/leisure travel. Meanwhile, the method of transfer to other transport modes was found to affect satisfaction only in the case of commuting/school travel, but not in the case of shopping/leisure travel. To activate the DRT service, it is necessary to consider the five influencing factors analyzed above. In addition, the differentiating factors between commuting/school and shopping/leisure travel were also identified. In the case of commuting/school travel, people value time and consider it to be important, so it is necessary to promote the convenience of transfer to other transport modes to reduce the total travel time. Regarding shopping/leisure travel, it is necessary to consider ways to create a facility that allows users to easily and conveniently designate the location of the pickup and drop-off point.

Comparative study of flood detection methodologies using Sentinel-1 satellite imagery (Sentinel-1 위성 영상을 활용한 침수 탐지 기법 방법론 비교 연구)

  • Lee, Sungwoo;Kim, Wanyub;Lee, Seulchan;Jeong, Hagyu;Park, Jongsoo;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.3
    • /
    • pp.181-193
    • /
    • 2024
  • The increasing atmospheric imbalance caused by climate change leads to an elevation in precipitation, resulting in a heightened frequency of flooding. Consequently, there is a growing need for technology to detect and monitor these occurrences, especially as the frequency of flooding events rises. To minimize flood damage, continuous monitoring is essential, and flood areas can be detected by the Synthetic Aperture Radar (SAR) imagery, which is not affected by climate conditions. The observed data undergoes a preprocessing step, utilizing a median filter to reduce noise. Classification techniques were employed to classify water bodies and non-water bodies, with the aim of evaluating the effectiveness of each method in flood detection. In this study, the Otsu method and Support Vector Machine (SVM) technique were utilized for the classification of water bodies and non-water bodies. The overall performance of the models was assessed using a Confusion Matrix. The suitability of flood detection was evaluated by comparing the Otsu method, an optimal threshold-based classifier, with SVM, a machine learning technique that minimizes misclassifications through training. The Otsu method demonstrated suitability in delineating boundaries between water and non-water bodies but exhibited a higher rate of misclassifications due to the influence of mixed substances. Conversely, the use of SVM resulted in a lower false positive rate and proved less sensitive to mixed substances. Consequently, SVM exhibited higher accuracy under conditions excluding flooding. While the Otsu method showed slightly higher accuracy in flood conditions compared to SVM, the difference in accuracy was less than 5% (Otsu: 0.93, SVM: 0.90). However, in pre-flooding and post-flooding conditions, the accuracy difference was more than 15%, indicating that SVM is more suitable for water body and flood detection (Otsu: 0.77, SVM: 0.92). Based on the findings of this study, it is anticipated that more accurate detection of water bodies and floods could contribute to minimizing flood-related damages and losses.