• Title/Summary/Keyword: 지상제어 시스템

Search Result 351, Processing Time 0.027 seconds

Lightweight Authentication Scheme for Secure Data Transmission in Terrestrial CNPC Links (지상 CNPC 링크에서 안전한 데이터 전송을 위한 경량화된 인증기법)

  • Kim, Man Sik;Jun, Moon-Seog;Kang, Jung Ho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.9
    • /
    • pp.429-436
    • /
    • 2017
  • Unmanned Aerial Vehicles (UAV) that are piloted without human pilots can be commanded remotely via frequencies or perform pre-inputted missions. UAVs have been mainly used for military purposes, but due to the development of ICT technology, they are now widely used in the private sector. Teal Group's 2014 World UAV Forecast predicts that the UAV market will grow by 10% annually over the next decade, reaching $ 12.5 billion by 2023. However, because UAVs are primarily remotely controlled, if a malicious user accesses a remotely controlled UAV, it could seriously infringe privacy and cause financial loss or even loss of life. To solve this problem, a secure channel must be established through mutual authentication between the UAV and the control center. However, existing security techniques require a lot of computing resources and power, and because communication distances, infrastructure, and data flow are different from UAV networks, it is unsuitable for application in UAV environments. To resolve this problem, the study presents a lightweight UAV authentication method based on Physical Unclonable Functions (PUFs) that requires less computing resources in the ground Control and Non-Payload Communication (CNPC) environment, where recently, technology standardization is actively under progress.

A Train Locating Device Using the Current Phase Difference Upon Magnetic Field Variation (자기장 변화에 따른 전류 위상차를 이용한 열차 위치검지 장치)

  • Choi, Jae Sik;Kim, Baik;Rho, Sung Chan
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.6
    • /
    • pp.604-608
    • /
    • 2012
  • Traditionally, the track circuits have been used for the purpose of train locating. However, the recent train control systems like a CBTC(Communications Based Train Control) do not utilize the track circuits to minimize the amount of ground signal devices. Therefore, there are increasing concerns over the system that can locate the position of train exactly without using the track circuits. Then, the contactless locating methods are added to ensure safety when the shunting sensitivity of the track circuit becomes low for the existing sections equipped with the track circuits. In this paper, a prototype of train locating device has been designed and tested, which utilizes the current phase difference upon magnetic field variation. The results show improved features of this method over the conventional track circuits method.

Obstacle Avoidance of GNSS Based AGVs Using Avoidance Vector (회피 벡터를 이용한 위성항법 기반 AGV의 장애물 회피)

  • Kang, Woo-Yong;Lee, Eun-Sung;Chun, Se-Bum;Heo, Moon-Beom;Nam, Gi-Wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.6
    • /
    • pp.535-542
    • /
    • 2011
  • The Global Navigation Satellite System(GNSS) is being utilized in numerous applications. The research for autonomous guided vehicles(AGVs) using precise positioning of GNSS is in progress. GNSS based AGVs is useful for setting driving path. This AGV system is more efficient than the previous one. Escipecially, the obstacle is positioned the driving path. Previcious AGVs which follow marker or wires laid out on the road have to stop the front of obstacle. But GNSS based AGVS can continuously drive using obstacle avoidance. In this paper, we developed collision avoidance system for GNSS based AGV using laser scanner and collision avoidance path setting algorithm. And we analyzed the developed system.

Relay of Remote Control Signal for Spacecraft in Deep Space via FHLH (FHLH를 매개로 한 심우주 우주선 원격 제어 신호 중계)

  • Koo, Cheol Hea;Kim, Hyungshin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.4
    • /
    • pp.295-301
    • /
    • 2020
  • When a spacecraft in deep space falls into an abnormal state, an emergency communication channel between ground and the spacecraft is essential in order to perform analysis to the cause of the anomaly, and to remedy the spacecraft from the distressed state. Because the recovery actions generally comprises of long and complicated sequences of commands, the transmission of the recovery commands may require a reliable and a delay tolerant networking technology based on bundle routing. While the delay tolerant networking protocol becomes a prominent method interfacing ground and space into a internet-like Solar system network because it can address the issues of the severe communication problems in deep space, the communication system on the spacecraft which based on space packet protocol cannot use the delay tolerant networking technology directly. So a community of the consultative committee for space data systems starts a discussion of the first-hop last-hop mechanism to establish a feasible concept and standardization. This paper presents an enhanced concept of the first-hop last-hop by applying it a virtual cislunar communication environment, and we believe this contributes to make a way applicable to an interoperable relay concept of the first hop last hop between the delay tolerant networking and space packet protocol standard.

A Study on Reliability Improvement of RALT for KUH through Fault Analysis (한국형기동헬기 레이더고도계의 결함분석을 통한 신뢰성 향상에 관한 연구)

  • Jun, Byung Kyu;Kim, Young Mok;Chang, Joong Jin;Kim, Chang Young;Hwang, Gil Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.5
    • /
    • pp.406-414
    • /
    • 2014
  • In this paper, it is introduced characteristics of FMCW-type Radar Altimeter for KUH, and its defects occurred during ground/flight test in initial product phase. In addition, it is also described 'data/control flow model' based fault analysis results of S/W and processes of verifying improvement design through flight test as well as aircraft system integration test called MEP SIL. As a result of design improvement and verification, it is validated that settling the defects and improving not only safety but also capability of the KUH.

Effects of Characteristic Length Variation for Thrust Chamber on the Hot-fire Performance of Hydrazine Thruster (하이드라진 추력기의 추력실 특성길이 변화가 연소성능에 미치는 영향)

  • Kim, Jong Hyun;Jung, Hun;Kim, Jeong Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.2
    • /
    • pp.144-149
    • /
    • 2014
  • A ground firing test for hot-fire performance evaluation according to the characteristic length($L^*$) variation of thrust chamber was carried out for the hydrazine thruster which may be employed in space launch vehicles. A scrutiny into the performance characteristics of each thruster is made in terms of thrust, specific impulse, response characteristics, and characteristic velocity at steady-state firing mode with propellant inlet pressure of 2.41 MPa (350 psia). Through the test results, it has been verified that performance of characteristic velocity and specific impulse degrades as the characteristic length deviates from that of the standard model. Thus, it is confirmed that the thrust chamber configuration of standard model was suitably designed for the requirement specified.

Control Method of BIFS Contents for Mobile Devices with Restricted Input Key (제한적 키 입력을 갖는 휴대 단말에서의 BIFS 콘텐츠 제어방법)

  • Kim, Jong-Youn;Moon, Nam-Mee;Park, Joo-Kyung
    • Journal of Broadcast Engineering
    • /
    • v.15 no.3
    • /
    • pp.346-354
    • /
    • 2010
  • T-DMB is using MPEG-4 BIFS standard format for broadcasting interactive data service. BIFS enables us to represent contents as a scene which consists of various objects such as AV, image, graphic, and text. It also enables us to control objects by using user interaction. BIFS was designed to be adapted to multimedia systems with various input devices. Today, however, we are in lack of considering about mobile device with restricted input unit. The problem is that a consistent user control of interactive data contents is not possible due to the limitations of input units in T-DMB terminals. To solve the problem, we defined KeyNavigator node that provides a means to select or navigate objects (like menu) in BIFS contents by arrow keys and enter key of mobile terminal. By using KeyNavigater node, not only BIFS contents providers can make BIFS contents as they want, but also users can get a way to control BIFS contents consistently and easily.

Design of Deep Learning-Based Automatic Drone Landing Technique Using Google Maps API (구글 맵 API를 이용한 딥러닝 기반의 드론 자동 착륙 기법 설계)

  • Lee, Ji-Eun;Mun, Hyung-Jin
    • Journal of Industrial Convergence
    • /
    • v.18 no.1
    • /
    • pp.79-85
    • /
    • 2020
  • Recently, the RPAS(Remote Piloted Aircraft System), by remote control and autonomous navigation, has been increasing in interest and utilization in various industries and public organizations along with delivery drones, fire drones, ambulances, agricultural drones, and others. The problems of the stability of unmanned drones, which can be self-controlled, are also the biggest challenge to be solved along the development of the drone industry. drones should be able to fly in the specified path the autonomous flight control system sets, and perform automatically an accurate landing at the destination. This study proposes a technique to check arrival by landing point images and control landing at the correct point, compensating for errors in location data of the drone sensors and GPS. Receiving from the Google Map API and learning from the destination video, taking images of the landing point with a drone equipped with a NAVIO2 and Raspberry Pi, camera, sending them to the server, adjusting the location of the drone in line with threshold, Drones can automatically land at the landing point.

Mission and Conceptual System Design of Solar Sail Testing Cube Satellite CNUSAIL-1 (태양돛 시험용 큐브위성 CNUSAIL-1의 임무 및 시스템 개념설계)

  • Koo, Soyeon;Kim, Gyeonghun;Yoo, Yeona;Song, Sua;Kim, Sungkeun;Oh, Bockyoung;Woo, Beomki;Han, Chang-Gu;Kim, Seungkeun;Suk, Jinyoung;Han, Sanghyuck;Choi, Gi-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.7
    • /
    • pp.586-593
    • /
    • 2014
  • The CNUSAIL-1 project aims to develop and operate a 3U-sized cube satellite with solar sail mechanism. The primary mission is to successfully deploy the solar sail in a low earth orbit, and the secondary mission is to collect the scientific data for the effect of the solar sail deployment and operation on orbit maneuver and attitude change of the cube satellite. For this, the bus system will collect and transmit the dynamic data of the satellite and the visual images of the solar sail operation. This paper describes solar sail mission and conceptual design of CNUSAIL-1. The actuation/operation of the solar sail and the bus system are preliminarily designed in terms of attitude control system, communication system, electrical power system, command and data handling system, structure and thermal control system is designed.

The study on scheme for train position detection based on GPS/DR (GPS/DR기반의 차상열차위치검지방안 연구)

  • Shin, Kyung-Ho;Joung, Eui-Jin;Lee, Jun-Ho
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.802-810
    • /
    • 2006
  • For a thorough train control, the precise train position detection is necessarily required. The widely used current way for train position detection is the one of using track circuits. The track circuit has a simple structure, and has a high level of reliability. However trains can be detected only on track circuits, which have to be installed on all ground sections, and much amount of cost for its installation and maintenance is needed. In addition, for the track circuit, only discontinuous position detection is possible because of the features of the closed circuit loop configuration. As the recent advances in telecommunication technologies and high-tech vehicle-based control equipments, for the train position detection, the method to detect positions directly from on trains is being studied. Vehicle-based position detection method is to estimate train positions, speed, timing data continuously, and to use them as the control information. In this paper, the features of GPS navigation and DR navigation are analyzed, and the navigation filters are designed by constructing vehicle-based train position detection method by combining GPS navigation and DR navigation for their complementary cooperation, and by using kalman filter. The position estimation performance of the proposed method is also confirmed by simulations.

  • PDF