• Title/Summary/Keyword: 지보 시스템

Search Result 71, Processing Time 0.02 seconds

A study on the new supporting system using steel ribs in sandy soil (사질토 지반에서 강지보를 고려한 신개념 지보시스템에 대한 연구)

  • Kim, Sang-Hwan;Kim, Ji-Tae;Kang, Jun-Gu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.5
    • /
    • pp.395-411
    • /
    • 2011
  • This paper presents a new supporting system using steel ribs. In order to perform this research, experimental and numerical studies were performed. In the experimental study, the scaled model tests for the new supporting system consisting of the steel ribs and rock bolts were carried and compared with the conventional existing supporting system. The numerical simulation was carried out to evaluate the new supporting system to verify the experimental results. It was found that the new tunnel supporting system will reduce the tunnel damage.

New High-performance Supporting System of Shallow Tunnel in Soil (저토피 구간의 신개념 고성능 터널지보시스템에 대한 연구)

  • Kim, Sang-Hwan;Yun, Seung-Gi
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.7
    • /
    • pp.11-21
    • /
    • 2009
  • This paper presents a new high-performance supporting system of the shallow tunnel. In order to perform this research the mechanism of new supporting system is suggested and compared with the conventional existing supporting system. It is found that the new supporting system as pre-support system has several advantages such as improvement of ground before tunnel excavation and increment of capacity of the tunnel support. The construction procedures of this supporting system are also reviewed. In addition, the numerical simulation is carried out to evaluate the new supporting system. It is found that the new high-performance supporting system is very applicable in shallow depth tunnel such as portal area, tunnel in soil and weak zone, and so on.

A Method for Assessing Structural Safety of Ground-Support Systems in Underground Rock Cavern (지하 암반 공동내 지보시스템의 구조적 안전성 평가 방법)

  • 장승필;서정문
    • The Journal of Engineering Geology
    • /
    • v.6 no.1
    • /
    • pp.23-31
    • /
    • 1996
  • A stress redistribution process in ground support system is mpdeled taking into consideration of load transfer mechanism of unbalanced load within shotcrete in a rock cavern constructed by NATM. The corresponding analysis model for ground support system is proposed and the elastic behavior of the shotcrete is studied. The effect on the support system due to variation of several design parameters is analysed with the proposed model. The suggested model yields considerably reduced maximum compressive stresses in shotcrete. Both the pressure coefficient in horizontal direction and the elastic modulus of rock mass govern overall responses, whereas the variation of the properties in support system shows a little difference in system responses. Interaction equations for evaluating safety factors for structural members are suggested. The result of this study can be used in the structural safety assessment of underground structures.

  • PDF

A Study on the Support System of Large Caverns Under High Initial Stress (과지압 하에 있는 대규모 지하공동의 지보 시스템에 관한 연구)

  • 박연준;유광호;최영태;김재용
    • Tunnel and Underground Space
    • /
    • v.14 no.2
    • /
    • pp.154-166
    • /
    • 2004
  • A numerical stability analysis was conducted on the large oil storage caverns excavated in a rock mass under high initial horizonal stress. The behaviors of the surrounding rock mass, rockbolts, and shotcrete were analyzedr and stability of the support members were assessed. For a proper support system design, the effect of the modelling technique, cavern shape and rockbolt length on the stability of the cavern was investigated. Results show that installation timing of supports and the change in cavern shape due to stepwise excavation affect the stress induced in support members. Also found was desperate need for a numerical technique which can properly reflect the behavior of the steel fiber reinforced shotcrete.

Evaluation of Support Performance of Fiber-Net Integrated Shotcrete in Tunnel Support System (숏크리트용 섬유 그물망 일체형 터널 지보시스템의 지보 성능 평가)

  • Kim, Jiyoung;Choi, Seongcheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.545-552
    • /
    • 2020
  • This study evaluated the support performance of fiber-net integrated shotcrete in tunnel support system developed for the purpose of improving constructability and stability while fully performing its mechanical performance as a tunnel support materials by four-point bending test, two-dimensional numerical analysis, and cross-sectional analysis. As a result of evaluating the flexural performance through a four-point bending test, in the case of fiber-net reinforced shotcrete, the tensile performance of fiber-net resulted in a continuous increase in load after crack occurrence, unlike steel fiber reinforced shotcrete. Also, the results of the tunnel cross-sectional structure analysis for ground conditions and the cross-sectional analysis of fiber-net and steel fiber reinforced shotcrete showed that sufficient support performance can be exhibited even if the thickness of fiber-net reinforced shotcrete was reduced compared to the previous one. Additionally, through these results, the support pattern of fiber-net integrated shotcrete in tunnel support system, which can be applied efficiently to the construction sections requiring higher stability among the rock mass class III, was proposed.

Reliability Assessment of Tunnel Support Systems Using a Probability-Based Method (확률론적 기법을 이용한 터널 지보시스템의 신뢰성 평가)

  • Park, Do-Hyun;Park, Eui-Seob;Song, Won-Kyong;Ryu, Dong-Woo
    • Tunnel and Underground Space
    • /
    • v.20 no.1
    • /
    • pp.39-48
    • /
    • 2010
  • The present study developed a program which can assess the reliability of tunnel support systems based on a probability-based method. The developed program uses FLAC2D as a solver, and can automatically execute all the processes, associated with numerical and probabilistic analysis. Since a numerical analysis, which models the ground, requires a significant calculation time, it is actually impossible to apply simulation-based methods to probabilistic assessment on the reliability of tunnel support systems. Therefore, the present study used a point estimate method, which is efficient for probabilistic analysis since the method can significantly reduce the number of samples when compared with the simulation-based method. The developed program was applied to a tunnel project, and the results were compared with those through a deterministic approach. From the comparison, it was identified that a probabilistic approach can quantitatively assess the reliability of tunnel support systems based on probability of failure and can be used as a tool for decision making in tunnel support designs.

Standardization of tunnel supporting system in karst formation (석회암 공동발달유형에 따른 터널지보패턴의 표준화에 대한 연구)

  • Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.3
    • /
    • pp.279-289
    • /
    • 2003
  • In karst formation area, the tunnel support system is an important factor for the tunnel safety during operation. It is also not easy to determine the tunnel supporting system in the design stage. Therefore, it is necessary to standardize the tunnel supporting system in uncertain ground condition. This paper presents the standardization of the tunnel supporting systems to be adopt in karst formation. For the tunnel planned in the project area, karst features and the expected scenarios in the tunnel area were developed based on the results of the geological and geotechnical assessment. In order to provide specific supporting system and construction details for a wide range of possible karst features, the generalized typical support systems are developed according to the classification of karst features. In addition, the initial support systems and construction sequence for each karst feature are also presented in this paper.

  • PDF

Application of the Evaluation System of Rock Mass in a Mountain Tunnel Constructed by NATM (NATM 시공 산악터널에서의 암반평가시스템 적용 연구)

  • 김영근;장정범;정한중
    • Tunnel and Underground Space
    • /
    • v.5 no.4
    • /
    • pp.297-307
    • /
    • 1995
  • 터널은 긴 선상구조물로서 사정조사결과와 다른 지질조건이 나타날 수 있으므로, 안전하고 합리적인 터널공사를 위해서는 시공중 지질조건에 적합한 지보설계를 실시하는 것이 필수적이다. 이를 위해서는 시공중 터널주변자반에 대한 정량적이고 공학적인 평가가 매우 중요하다. 그러나 시공중 암반을 평가하는 것은 매우 어렵고 조사자의 경험과 지식의 차이에 의해 평가정도가 크게 달라져 그 불합리성이 심화되고 있는 실정으로 터널주변암반에 대한 합리적인 평가방법이 절실히 요구되고 있다. 본 연구에서는 터널화상처리, GeoCAD, 역해석으로 구성된 평기시스템을 개발하였다. 본 시스템은 터널막장에서의 조사.시험 및 화상처리기법을 통하여 암반분류.평가를 실시하고, 터널주변 지반구조 및 굴착/지보과정의 3차원 모델링을 통하여 전방지질을 예측가능하게 하며, 터널계측자료의 역해석을 통하여 터널주변 지반의 물성을 정량적으로 평가할 수 있는 체계적이고 종합적인 평가시스템이다. 또한 이를 NATM 공법으로 시공되는 터널현장에 적용하므로써 본 시스템의 현장적용성을 검증하였으며, 이를 통해 적절한 지보공을 시공하여 터널의 안정성을 확보하고 합리적인 시공관리를 달성할 수 있었다.

  • PDF

Rock-support Interaction behavior for Ground Condition Based on Numerical Modelling (암반조건에 따른 암반-지보 반응거동의 수치해석적 연구)

  • 전양수;한공창;신중호
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.155-161
    • /
    • 2000
  • It is very important to control the final load that acts on a support system, in tunnel engineering. A reliable analysis is needed to carry out technically reasonable design and safe construction. Also, a series of procedures of construction and the rock-support interaction behavior must be considered. Most existing studies have been performed as the limited analysis based on the simplified assumption. In this study, through the analysis of a circular tunnel using a 2-D finite differential code, the rook-support interaction behaviors in the variation of rock and stress conditions are analyzed and compared with the results from the closed form solutions. Consequently, more realistic rock-support interaction curves are obtained by including the effects of initial stresses and rock condition. These cures are very useful to predict the required support pressure in the initial design stage.

  • PDF

Rock-support Interaction behavior for Ground Condition based on Numerical Modelling (암반조건에 따른 암반-지보 반응거동의 수치해석적 연구)

  • 전양수;한공창;신중호
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.403-409
    • /
    • 2000
  • It is very important to control the final load that acts on a support system, in tunnel engineering. A reliable analysis is needed to carry out technically reasonable design and safe construction. Also, a series of procedures of construction and the rock-support interaction behavior must be considered. Most existing studies have been performed as the limited analysis based on the simplified assumption. In this study, through the analysis of a circular tunnel using a 2-D finite differential code, the rock-support interaction behaviors in the variation of rock and stress conditions are analyzed and compared with the results from the closed form solutions. Consequently, more realistic rock-support interaction curves are obtained by including the effects of initial stresses and rock condition. These curves are very useful to predict the required support pressure in the initial design stage.

  • PDF