• Title/Summary/Keyword: 지보 성능

Search Result 54, Processing Time 0.023 seconds

Evaluation of Support Performance of Fiber-Net Integrated Shotcrete in Tunnel Support System (숏크리트용 섬유 그물망 일체형 터널 지보시스템의 지보 성능 평가)

  • Kim, Jiyoung;Choi, Seongcheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.545-552
    • /
    • 2020
  • This study evaluated the support performance of fiber-net integrated shotcrete in tunnel support system developed for the purpose of improving constructability and stability while fully performing its mechanical performance as a tunnel support materials by four-point bending test, two-dimensional numerical analysis, and cross-sectional analysis. As a result of evaluating the flexural performance through a four-point bending test, in the case of fiber-net reinforced shotcrete, the tensile performance of fiber-net resulted in a continuous increase in load after crack occurrence, unlike steel fiber reinforced shotcrete. Also, the results of the tunnel cross-sectional structure analysis for ground conditions and the cross-sectional analysis of fiber-net and steel fiber reinforced shotcrete showed that sufficient support performance can be exhibited even if the thickness of fiber-net reinforced shotcrete was reduced compared to the previous one. Additionally, through these results, the support pattern of fiber-net integrated shotcrete in tunnel support system, which can be applied efficiently to the construction sections requiring higher stability among the rock mass class III, was proposed.

Evaluation of the Structural Performance of Tetragonal Lattice Girders (사각 격자지보의 구조 성능 평가)

  • Kim, Seung-Jun;Han, Keum-Ho;Won, Deok-Hee;Baek, Jung-Sik;Kang, Young-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.3
    • /
    • pp.267-278
    • /
    • 2012
  • In general, the H-shaped steel ribs or triangular lattice girders have been mostly used in constructing tunnels through the NATM construction method. The H-shaped steel rib has higher flexural and axial strength than the triangular lattice girder, but many unexpected gaps can occur in the concrete lining system after shotcreting if the H-shaped steel rib is used as the support system. To achieve better shotcreting quality, the triangular lattice girder was developed. However, in general, the triangle lattice girder has low flexural and axial strength. Likewise, the triangular lattice girder, which has circular sectional members, has so many fractures from welded points at the joints between the members. Finally, the new type of tetragonal lattice girder was developed to overcome those problems. In this study, the structural performance of the tetragonal lattice girders was evaluated through analytical and experimental studies. In the analytical studies, the four-point bending analysis, the traditional evaluation method to determine the flexural strength of the lattice girder, was performed. Moreover, the linear-elastic analysis and stability analysis of the arch structure made by the lattice girders were performed to measure structural performance. Experiments were likewise performed to compare the structural performances of the tetragonal girder with traditional triangular lattice girders.

Evaluation of the performance for the reformed lattice girders (개량형 격자지보재의 성능 평가)

  • Kim, Hak-Joon;Bae, Gyu-Jin;Kim, Dong-Gyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.201-214
    • /
    • 2013
  • Lattice girders are widely used as a substitute for H-steel ribs at domestic tunnels. However, lattice girders have a weak point in terms of the support capacity compare to H-steel ribs because of the lower stiffness and the weakness of the welded parts. To improve the weakness of the lattice girder, reformed lattice girders are developed in Korea by adding one more spider and having flat welded surface. Laboratory tests and field measurements were performed for the original and the reformed lattice girders to evaluate the performance of the reformed lattice girders. According to the laboratory compression test, reformed lattice girders have 16% higher load bearing capacity than that of original lattice girders. Reformed lattice girders are more stable than original lattice girders because reformed lattice girders tend to bend less according to the field measurements.

A Numerical Study on the Behavior of Shotcrete Reinforced by Various Steel Supports (강재로 보강된 숏크리트 거동의 수치해석적 연구)

  • Lee, Sang-Don;Park, Yeon-Jun;Lim, Doo-Chul;Son, Jeong-Hun;You, Kwang-Ho;Kim, Su-Man
    • Tunnel and Underground Space
    • /
    • v.18 no.3
    • /
    • pp.226-238
    • /
    • 2008
  • The steel ribs which are used to enhance the supporting capability of the shotcrete are estimated to be very effective, but their characteristics depending on the types of steel support are not well understood enough to be considered in the design stage. This paper describes the behavior of the shotcrete reinforced by various types of steel supports. Through flexural toughness test, major strength parameters such as flexural tensile strength, equivalent flexural tensile strength and residual tensile strength were obtained and used in the numerical analyses. Test results show that steel rebar was not as dependable as H-beam or lattice girder but close examination of the test results revealed that the specimen was failed in shear because of the shorter span than desired. Therefore tests on the properly dimensioned specimens are necessary for valid evaluation of the steel rebar reinforced shotcrete. In the first set of numerical stability analyses, shotcrete and steel supports were modelled separately. Then compared with the second set of analyses in which shotcrete and steel supports were regarded as a composite material. The two results coincided reasonably and this equivalent model turned out to be useful.

Numerical Analysis on the Performance Evaluation of Cablebolts as Tunnel Supports (터널 지보재로서 케이블볼트의 성능평가에 관한 수치해석적 연구)

  • Park, Yeon-Jun;Park, Joon-Hyoung
    • Tunnel and Underground Space
    • /
    • v.22 no.2
    • /
    • pp.130-143
    • /
    • 2012
  • Cablebolts used to be employed as auxiliary supports where long or high capacity bolts are needed, but become competitive by the improvements in supportability and easiness in handling. Based on the test results obtained from various researches, the performance of the cablebolts was analyzed numerically while varying lengths and fixing conditions. The supporting effecte is assessed by monitoring displacements and stress taken place in shotcrete. When cablebolts are grouted without being tensioned, supporting effect was not as good as that of rockbolts. But, their supportability was good enough to substitute rockbolts if tensioned properly. Post grouting right after tensioning of the cablebolts shows reduction in supportability, but long term stability could be achieved without losing supportability if grouted when the bolt is far enough from the face. Further study is necessary including laboratory and in-situ tests under various conditions to use cablebolts as main support in tunnels.

3-Dimensional numerical analysis on support performance of early-high-strength shotcrete (3차원 수치해석을 이용한 조기고강도 숏크리트 지보성능 분석)

  • Kim, Jong-Uk;Kim, Jung-Joo;Cho, Young-Jae;Yoo, Han-Kyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.5
    • /
    • pp.459-470
    • /
    • 2014
  • Now-a-days, the trend in constructing tunnels is to build more deeper, more longer tunnels of greater cross-sections. That's why, the demand of "Early-high-strength shotcrete" is very high because of their advantage of attaining higher strength immediately after excavation, which controls the ground subsidence. So, this study reveals the supporting phenomena of early-high-strength shotcrete, using three-dimensional numerical analysis. The crux of this study can be applied practically in construction sites also. Support Performance of two different qualities of shotcrete was checked out, by keeping the general shotcrete's thickness constant and comparing it with early-high-strength shotcrete's thickness decreasing it gradually in five steps, and analysing/comparing the support performance in all cases. Effect of using early-high-strength shotcrete was analysed to save the cost of steel sets, which are widely used for supporting the ground before the hardening of general shotcrete. The results of numerical analysis on the performance of early-high-strength shotcrete show that, it behaves more effectively under worse ground conditions and it can support the ground more conveniently than steel sets, before the shotcrete is hardened.

Analysis of Nonlinear Behaviors of Shotcrete-Steel Support Lining Considering the Axial Force Effects (축력의 영향을 고려한 숏크리트-강지보 합성 라이닝의 비선형 거동 분석)

  • Yu, Jeehwan;Kim, Jeongsoo;Kim, Moon Kyum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.357-367
    • /
    • 2017
  • Bending and axial forces simultaneously occur at the cross-section of a shotcrete lining reinforced with steel supports due to the tunnel geometry. The shotcrete has changing flexural stiffness depending on the axial forces and, as a result, severely nonlinear behavior. The mechanical properties of a shotcrete-steel composite also depend on the type of steel support. This study presents a fiber section element model considering the effect of axial force to evaluate the nonlinear behavior of a shotcrete-steel composite. Additionally, the model was used to analyze the effects of different types of steel supports on the load capacity. Furthermore, a modified hyperbolic model for ground reaction, including strain-softening, is proposed to account for the ground-lining interaction. The model was validated by comparing the numerical results with results from previous load test performed on arched shotcrete specimens. The changes in mechanical responses of the lining were also investigated. Results show a lining with doubly reinforcement rebar has similar load capacity as a lining with H-shaped supports. The use of more materials for the steel support enhances the residual resistance. For all types of steel reinforcement, the contribution of steel supports during peak load decreases as the ground becomes stiffer.

Experimental Study on Enhanced Structural Properties of Sprayable Waterproofing Membrane (구조적 성능이 보강된 차수용 박층 멤브레인의 기초 물성평가)

  • Lee, Chulho;Kim, Jintae;Choi, Myung-Sik;Chang, Jun-Hee;Kang, Tae-Ho;Choi, Soon-Wook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.93-102
    • /
    • 2018
  • A sprayable waterproofing membrane which is composed of polymer-based material is relatively easy to install due to its construction method comparing with sheet-type membranes. And a sprayable waterproofing membrane has very similar material composition to the TSL which is for a permanent support. In this study, material composition of the sprayable waterproofing membrane was changed to enhance structural properties of membrane while maintaining waterproofing performance. In order to compare with a previous research for the TSL, series of tests were performed according to the performance criteria used for permanent support material (TSL) by EFNARC (2008). From the test result, the structural performance of the sprayable waterproofing membrane considered in this study showed a performance that could be used as a permanent support material.

Development of a Powder-type Thin Spray-on Liner and Its Performance Evaluation at Different Curing Ages (분말형 박층 뿜칠 라이너 시작품의 제작과 성능평가)

  • Chang, Soo-Ho;Lee, Gyu-Phil;Han, Jin-Tae;Choi, Soon-Wook;Hwang, Gwi-Sung;Choi, Myung-Sik
    • Tunnel and Underground Space
    • /
    • v.25 no.3
    • /
    • pp.293-302
    • /
    • 2015
  • Thin Spray-on Liner (TSL) has been considered as a new rock support to replace shotcrete as well as wire mesh. However, the development of its original production technology is highly in demand since it is not open to the public. Therefore, two kinds of powder-type TSL prototypes were developed as the first development stage. Then, their mechanical properties were experimentally compared with those of a two-component foreign TSL material including both of liquid and powder components. From a series of experiments, the first TSL prototype mixing condition satisfied every TSL performance requirements specified by EFNRAC (2008), and showed much higher tensile and bond strengths than those of the two-component foreign TSL, even though the other TSL prototype cannot be used as a support member since its elongation at break is much lower than its corresponding EFNARC (2008) performance criterion. In addition, a further study to increase the ductility of the first TSL prototype might be necessary to guarantee its higher applicability to field conditions.

Evaluation of Field Applicability of Shotcrete for Fiber-net Integrated Tunnel Support System through Mock-up Test (목업 테스트를 통한 숏크리트용 섬유 그물망 일체형 터널 지보시스템의 현장 적용성 평가)

  • Kim, Jiyoung;Choi, Seongcheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.72-78
    • /
    • 2020
  • The present study developed shotcrete for fiber-net integrated tunnel support system, which consists of fiber-net support materials including netlike fiber and shotcrete and integration technology between support materials. In addition, in order to evaluate the field applicability of the developed tunnel support system and compare with the performance of steel fiber reinforced shotcrete, mock -up test was conducted on the mock -up structure. The test results show that in the case of shotcrete containing coarse aggregate(S20A5RP10-C), the excessive rebound rate occurred as the secondary shotcrete was dropped during construction due to the degradation in bond performance with fiber-net. Also, in the case of steel fiber reinforced shotcrete, the amount of cast shotcrete fell short of target value due to the fiber ball and the degradation of pumpability. On the other hand, the amount of cast mortar shotcrete(S20A5RP10-M) and the installation position of fiber-net were almost close to the target values, and the lower rebound rate occurred compared to the steel fiber reinforced shotcrete.