DOI QR코드

DOI QR Code

Experimental Study on Enhanced Structural Properties of Sprayable Waterproofing Membrane

구조적 성능이 보강된 차수용 박층 멤브레인의 기초 물성평가

  • Lee, Chulho (Department of Infrastructure Safety Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, Jintae (SILKROAD T&D) ;
  • Choi, Myung-Sik (SILKROAD T&D) ;
  • Chang, Jun-Hee (SILKROAD T&D) ;
  • Kang, Tae-Ho (Department of Infrastructure Safety Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Choi, Soon-Wook (Department of Infrastructure Safety Research, Korea Institute of Civil Engineering and Building Technology)
  • Received : 2018.11.09
  • Accepted : 2018.11.22
  • Published : 2018.12.30

Abstract

A sprayable waterproofing membrane which is composed of polymer-based material is relatively easy to install due to its construction method comparing with sheet-type membranes. And a sprayable waterproofing membrane has very similar material composition to the TSL which is for a permanent support. In this study, material composition of the sprayable waterproofing membrane was changed to enhance structural properties of membrane while maintaining waterproofing performance. In order to compare with a previous research for the TSL, series of tests were performed according to the performance criteria used for permanent support material (TSL) by EFNARC (2008). From the test result, the structural performance of the sprayable waterproofing membrane considered in this study showed a performance that could be used as a permanent support material.

차수용 박층 멤브레인은 폴리머로 구성된 재료로 기존 방수포(sheet membrane)를 대체할 수 있는 뿜어 붙이는 방식의 차수 재료이다. 시공에 있어서 뿜어 붙이는 방식을 사용하기 때문에 타설이 용이하고 상대적으로 높은 부착성능을 보인다. 차수용 박층 멤브레인의 배합은 영구 지보재로 쓰이는 TSL(Thin Spray-on Liner)와 매우 유사한 구성을 갖으나 적용 목적에 따라 차수와 지보재로 구분하고 있다. 본 연구에서는 차수용 박층 멤브레인의 차수 성능을 확보한 상태에서 구조적인 성능을 보강할 수 있도록 배합비를 조절하였다. 이를 검토하기 위해, 영구 지보재용 멤브레인 재료에 사용되는 성능 기준에 따라 시험을 수행하고 결과를 검토하였다. 시험결과 본 연구에서 고려한 차수용 박층 멤브레인의 구조적 성능은 영구 지보재로도 사용이 가능한 정도의 성능을 보였다.

Keywords

HKTHB3_2018_v17n4_93_f0001.png 이미지

Fig. 1. Schematics of waterproofing composite structure with shotcrete (Holter, 2015)

HKTHB3_2018_v17n4_93_f0002.png 이미지

Fig. 2. Shore A hardness for the sprayable waterproofing membrane

HKTHB3_2018_v17n4_93_f0003.png 이미지

Fig. 3. Direct tensile strengths of the waterproofing membrane by curing time

HKTHB3_2018_v17n4_93_f0004.png 이미지

Fig. 4. Elongation at break (%) of the waterproofing membrane by curing time

HKTHB3_2018_v17n4_93_f0005.png 이미지

Fig. 5. Direct tensile strengths of the waterproofing membrane and TSLs at different curing ages (Chang et al., 2016)

HKTHB3_2018_v17n4_93_f0006.png 이미지

Fig. 6. Elongation at break of the waterproofing membrane and TSLs at different curing ages (Chang et al., 2016)

HKTHB3_2018_v17n4_93_f0007.png 이미지

Fig. 7. Dollies detached after pull-off tests (Day 28)

HKTHB3_2018_v17n4_93_f0008.png 이미지

Fig. 8. Average bond strengths of the waterproofing membrane at different curing ages

HKTHB3_2018_v17n4_93_f0009.png 이미지

Fig. 9. Setup for TSL Linear Block Support Test (EFNARC, 2008)

HKTHB3_2018_v17n4_93_f0010.png 이미지

Fig. 10. TSL Gap Shear Load Test (EFNARC, 2008)

HKTHB3_2018_v17n4_93_f0011.png 이미지

Fig. 11. LBS test (left) and GSL test (right) of waterproofing membrane-coated specimens (7 days)

HKTHB3_2018_v17n4_93_f0012.png 이미지

Fig. 12. LBS test (left) and GSL test (right) results of waterproofing membrane-coated specimens

HKTHB3_2018_v17n4_93_f0013.png 이미지

Fig. 12. LBS test (left) and GSL test (right) results of waterproofing membrane-coated specimens (Continued)

Table 1. Essential properties of a sprayable waterproofing membrane (ITAtech, 2013)

HKTHB3_2018_v17n4_93_t0001.png 이미지

Table 2. Mixing Conditions of powder components for a sprayable waterproofing membrane

HKTHB3_2018_v17n4_93_t0002.png 이미지

Table 3. EFNARC (2008) criteria on TSL (Chang et al., 2016)

HKTHB3_2018_v17n4_93_t0003.png 이미지

References

  1. ASTM (2010), Standard Test Method for Tensile Properties of Plastics, ASTM International, D638, West Conshohocken, PA.
  2. ASTM (2013), Standard Test Method for Tensile Strength of Concrete Surfaces and the Bond Strength or Tensile Strength of Concrete Repair and Overlay Materials by Direct Tension (Pull-off Method), C1583/C1583M-13, West Conshohocken, PA.
  3. BS EN 1542 (1999), Products and systems for the protection and repair of concrete structures - Test methods - Measurement of bound strength by pull-off, British Standards Institution, London (UK).
  4. BS EN 1766 (2000), Products and systems for the protection and repair of concrete structures. Test methods. Reference concretes for testing, British Standards Institution, London (UK).
  5. BS EN 12390-8 (2009), Testing hardened concrete. Part 8: Depth of penetration of water under pressure, British Standards Institution, London (UK).
  6. Chang, S-H., Kang, T-H., Choi, S-W., Lee, C., Hwang, G-S. and Choi, M-S. (2016), "An Experiment Study on Fundamental Properties of a Sprayable Waterproofing Membrane", Tunnel & Underground Space, Vol.26, No.3, pp.220-234. (in Korean) https://doi.org/10.7474/TUS.2016.26.3.220
  7. Choi, S-W., Kang, T-H., Chang, S-H., Lee, C., Kim J. and Choi, M-S. (2017), "A Preliminary Study of Watertightness and Salt Water Resistance of Spray-applied membrane", Journal of Korean Tunnelling and Underground Space Association, Vol.19, No.2, pp.283-299. (in Korean) https://doi.org/10.9711/KTAJ.2017.19.2.283
  8. EFNARC (2008), Specification and Guidelines on Thin Spray-on Liners for Mining and Tunneling, European Federation of National Associations Representing for Concrete.
  9. Holter, K. G. (2015), Properties of Waterproof Sprayed Concrete Linings, Ph.D. Thesis, Norwegian University of Science and Technology.
  10. ITAtech (2013), ITAtech design guidance for spray applied waterproofing membranes, ITAtech Activity Group Lining and Waterproofing, ITAtech Report No.2.
  11. Johnson, R. P., Swallow, F. E. and Psomas, S. (2016), "Structural properties and durability of a sprayed waterproofing membrane for tunnels", Tunnelling and Underground Space Technology, Vol.60, pp.41-48. https://doi.org/10.1016/j.tust.2016.07.013
  12. Lee, K., Kim, D., Chang, S. H., Choi, S. W. and Lee, C. (2017), "Analysis of Reinforcement Effect of TSL (Thin Spray-on Liner) as Supports of Tunnel by Numerical Analysis," Journal of Korean Geosynthetics Society, Vol.16, No.4, pp. 151-161. (in Korean) https://doi.org/10.12814/JKGSS.2017.16.4.151
  13. Lee, K., Kim, D., Chang, S-H., Choi, S-H., Park, B. and Lee, C. (2018), "Numerical Approach to Assessing the Contact Characteristics of a Polymer-based Waterproof Membrane", Tunnelling and Underground Space Technology, Vol.79, pp.242-249. https://doi.org/10.1016/j.tust.2018.05.015
  14. Stubberfield, K. (2016), Masterseal 345(R) Application Course - Lecture Material, Tunnelling & Underground Construction Academy (TUCA), London, April 13, 2016. 15. Thomas, A., 2009, Sprayed Concrete Lined Tunnels.
  15. Su, J. and Bloodworth, A. (2016), "Interface parameters of composite sprayed concrete linings in soft ground with sprayapplied waterproofing", Tunnelling and Underground Space Technology, Vol.59, pp.170-182. https://doi.org/10.1016/j.tust.2016.07.006
  16. Tannant, D. D. (2001), "Thin Spray-on Liners for Underground Rock Support", Proceedings of the 17th International Mining Congress and Exhibition of Turkey-IMCET 2001, pp. 57-73.
  17. Verani, C. A. and Aldrian, W. (2010), Composite linings: ground support and waterproofing through the use of a fully bonded membrane, Shotcrete: Element of a System, Taylor & Francis, London.