• Title/Summary/Keyword: 지방족 폴리에스테르

Search Result 21, Processing Time 0.035 seconds

New Aliphatic Diol/Dicarboxylic Acid Based Biodegradable Polyesters and Their in-vitro Degradations (새로운 지방족 디올/디카복실산계 생분해성 폴리에스테르 및 가수분해 특성)

  • Kang Tae-Gon;Han Yang-Kyoo
    • Polymer(Korea)
    • /
    • v.29 no.3
    • /
    • pp.314-319
    • /
    • 2005
  • Four kinds of new aliphatic diols were synthesized by the ring opening reaction of glycolide with 1,4-butanediol, 1,6-hexanediol, 1,4-cyclohexanediol, or 1,4-cyclohexanedimethanol, a difunctional initiator, in the presence of stannous octoate catalyst. The resulting diols were melt-polymerized with succinic acid, adipic acid, or suberic acid at 170, 190, or $220^{circ}C$ to produce new sequentially ordered aliphatic polyesters and their corresponding polyesters with random structure. Their glass transition temperatures ($T_g$) ranged from -40 to $30^{circ}C$, The sequentially ordered polyesters prepared at $170^{cir}C$ had higher $T_g$ of 5 to $10^{circ}$ than the polyesters with rand()m structure produced at higher temperature. From in-vitro degradation test the sequentially ordered polyesters was shower in the rate of hydrolysis in a buffer solution than the polymers with random molecular structure.

Synthesis and Characterization of Aliphatic Hyperbranched Polyesters (지방족 고차가지구조 폴리에스테르의 합성 및 물성)

  • Kim Jang-Yup;Ok Chang-Yul;Lee Sang-Won;Huh Wansoo
    • Polymer(Korea)
    • /
    • v.29 no.6
    • /
    • pp.575-580
    • /
    • 2005
  • The hydroxy terminated aliphatic hyperbranched polyesters having different generations were synthesized by using melt polycondensation procedure. Then, the terminal groups of hyperbranched polyesters were modified by using acryloyl chloride and characterized by $\^{1}H$-NMR and GPC techniques. As a result of the modification of terminal groups for hyperbranched polyesters, the phase of the polymers were changed from sticky solid to high viscous liquid indicating that the glass transition temperatures of modified hyperbranched polyesters were lower than the original one. The thermal stabilities of hydroxy terminated hyperbranched polyesters were higher than those of terminal group-modified polymers.

Synthesis of Functional Copolyester, its Blend with PET, and Properties of Carbon Black Dry Color (기능성 폴리에스테르 공중합체의 합성, PET와의 블렌드 및 카본 블랙 Dry Color의 물성)

  • Park, Lee Soon;Lee, Dong Chan;Kim, Jin Kon;Huh, Wan Soo
    • Applied Chemistry for Engineering
    • /
    • v.7 no.3
    • /
    • pp.496-503
    • /
    • 1996
  • Aromatic and aliphatic copolyesters for the dispersing agent were synthesized by two stage reaction, esterification and polycondensation. Copolyesters were blended with PET in the melt state and their thermal and rheological properties were investigated. From GPC analysis Mn's and Mw's of copolyesters were about 30000 and 65000g/mol, respectively. From DSC experiment copolyesters had melting range of $90{\sim}150^{\circ}C$. Copolymer composition was in good agreement with comonomer feed ratio from $^1H$-NMR analysis. Copolyesters and SPA (standard sample) were blended with PET in the melt state. From DSC experiment, copolyesters and SPA were miscible with PET. From the dynamic melt viscosity experiment, melt viscosity of blended sample was increased as the content of aromatic copolyester was increased, while it was decreased as the content of aliphatic and SPA were increased. As for volume resistivity of dry color containing carbon black and copolyesters with dispersing time, aromatic copolyester showed highest value. It was conferred from this result that aromatic copolyester was the best dispersing agent for carbon black in PET resin.

  • PDF

Study on Type of Different Polyols for Physical Properties of Polyurethane Foam Under Sea Water (해수에서 폴리올 종류가 폴리우레탄 폼의 물성에 미치는 영향)

  • Kim, Sang-Bum
    • Elastomers and Composites
    • /
    • v.46 no.2
    • /
    • pp.158-163
    • /
    • 2011
  • Rigid polyurethane foam (PUF) was synthesized with different contents of aliphatic polyester polyol, aromatic polyester polyol and aliphatic polyether polyol to know change of properties under sea water. UTM(universal testing machine), DSC(differential scanning calorimetry), hardness meter and FT-IR(Fourier transform spectroscopy) were used to study the PUF`s physical properties under sea water. Compressive strength and hardness of PUF decreased with increasing the content of aromatic polyester polyol under sea water as aging. According to the results of IR spectral analysis, reduction of urethane and urea peak was found and allophanate and biuret peak increased. Although glass transition temperature of PUF increased, mechanical properties of PUF decreased under sea water, because PUF gets brittle when crosslink density increase.

Preparation and Thermal Properties of Aliphatic Network Polyester-Silica Composites (지방족 가교 폴리에스테르-실리카 복합재료의 제조 및 열적특성)

  • Oh, Chang-Jin;Park, Su-Dong;Han, Dong-Cheul;Kwak, Gi-Seop
    • Polymer(Korea)
    • /
    • v.34 no.5
    • /
    • pp.424-429
    • /
    • 2010
  • The hybrid composites of aliphatic polyester-silica were prepared via a sol-gel reaction and their potential application using as a buffer coating layer in the thermoelectric device were investigated. When aliphatic polyesters were thermally treated at a high temperature of $240^{\circ}C$, the polymer showed an increases in thermal degradation temperature by $30{\sim}90^{\circ}C$ according to the thermal treatment time. The polyester-silica composites showed an increases in thermal degradation temperature by $30{\sim}50^{\circ}C$ according to the content of the added silica. Polyester-silica composite showed neither discoloration nor change in optical properties because Knoevenagel condensation reaction was hindered by silica structure. The thermal conductivity of the composites increased linearly according to the content of added silica.

A Study on the Biodegradable Properties of Polyesters associated with their Chemical Structures (폴리에스테르의 화학적 구조에 따른 생분해 거동에 관한 연구)

  • Woo, Je-Wan;Sohn, Myung-Ho;Cha, Hye-Young;Park, Yang-Sung;Chang, Kil Sang;Whang, Young-ae;Park, Sang-Soon
    • Clean Technology
    • /
    • v.8 no.4
    • /
    • pp.223-228
    • /
    • 2002
  • The biodegradable Properties of various polyester resins with different chemical structures have been studied by applying the controlled compost test and soil burial test. Celluose was taken as a fully biodegradable reference resin while PVC and PE were empolyed as non-biodegradable reference chains or ester group were rather easily degraded by hydrolase, meanwhile copolymer type polyesters which contain aromatic rings showed relatively low biodegradability. According to the results from controlled compost test, cellulose(the positive reference) showed 70.6% degradation after 45 days, whereas synthetic poly(butylene adipate-co-succinate), poly(butylene succinate), poly(butylene adipate-co-succinate-co-terephthalate) showed 44.0%, 32.0% and 23.4% degradation respectively. In this regard, it was concluded that biodegradable properties of polymers are largely dependant on the chemical structures constituting the polymers.

  • PDF

Synthesis of Biodegradable Aliphatic Polyester with Amino Group in the Side Chain (곁사슬에 아미노기를 도입한 생분해성 지방족 폴리에스테르의 합성)

  • Lee, Chan-Woo
    • Polymer(Korea)
    • /
    • v.34 no.4
    • /
    • pp.381-385
    • /
    • 2010
  • Aiphatic diester monomer, 3-[(benzyloxycarbonylamino)butyl]-1,4-dioxane-2,5-dione (BABD), was synthesized with the N-$\varepsilon$-benzyloxy-carbonyl-L-lysine as starting material. This monomer was synthesized to add the functionality to poly(lactic acid)s. BABD unit was successfully incorporated into the PLLA chain which was confirmed by $^1H$ NMR. The copolymer composition could be controlled by the feed ratios of monomer. The $M_n$ of this resultant polymer is expected to reach high molecular weight after the purification of monomer and optimization of polymerization time, though the polymer showed relatively low degree of polymerization ($M_n$=3300). The copolymer is expected to possess the enhanced hydrophilicity and the possibility of chemical modification on amino group.

Preparation and Mechnical Properties of Biodegradable Plastic Natural Fiber Composite (생분해성 플라스틱 천연Fiber 복합체의 물리적 특성)

  • Lee, Dong-Hyun;Kim, Sung-Tae;Kim, Dong-Gye;Kim, Sang-Gu;Park, Byung-Wok
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.03a
    • /
    • pp.79-79
    • /
    • 2011
  • 최근 플라스틱 제품의 사용후 폐기에서 발생 되는 환경적인 문제점들이 대두 되고 있는 가운데, 이러한 제품에 대한 친환경적인 재료 설계에 대한 요구가 거세지고 있는 실정으로 플라스틱 업계의 사활이 걸릴 정도의 중요한 문제로 부각되고 있다. 본 연구에서는 이러한 플라스틱 제품의 치명적인 환경적인 문제점을 극복하고자, Matrix 물질이 되는 플라스틱에서 부터 친 환경적인 생분해성 수지를 사용하면서, 물성의 강화제로써 천연물 유래의 여러 종류의 섬유를 사용하고자 하였다.가장 보편화된 생분해성 플라스틱인 지방족 폴리에스테르 계통의 생분해성 수지와 Polylactic acid에 대해 검토를 하였다. 지방족 폴리에스테르 의 경우는 기존 플라스틱 제품과 비교해서 유연하고, 신장율이 높고, PLA 대비 내열 사용한계 온도도 높아서 물성적인 측면에서 상당한 장점을 가지고는 있으나 가격이 매우 고가이므로, 기존 플라스틱을 대체하는 것에는 문제점이 있다. 반면 PLA의 경우 지방족 폴리에스테르 대비 절반 이하의 가격이고 기계적 강도 또한 매우 높기 때문에 기존의 플라스틱을 대체할 수 있는 가장 유력한 물질로 대두 되고 있으나, 사출물과 같은 충격이 요구되는 제품에 있어서는 PLA 고유의 약한 취성이 가장 큰 단점으로 지적되고 있다. 본 연구에서는 이러한 PLA를 기반으로 PLA의 장점이 기계적 강성을 유지하면서, 취성을 보완하기 위해 PBS를 혼합 할 수 있는 기술을 개발하였으며, 또한 원재료의 Cost를 줄이고, PBS 혼합에 따른 PLA의 기계적 강도 감소를 보완하기 위해 천연물 유래의 Wood fiber, Starch, Bamboo fiber, Cellulose fiber, Paper fiber 와 같은 각종 천연 Filler를 사용하여 기계적 기계적 강도 감소를 최소화 하였다.

  • PDF