Browse > Article

New Aliphatic Diol/Dicarboxylic Acid Based Biodegradable Polyesters and Their in-vitro Degradations  

Kang Tae-Gon (Department of Chemistry, Hanyang University, Korea Center for Advanced Functional Polymers, KAIST)
Han Yang-Kyoo (Department of Chemistry, Hanyang University, Korea Center for Advanced Functional Polymers, KAIST)
Publication Information
Polymer(Korea) / v.29, no.3, 2005 , pp. 314-319 More about this Journal
Abstract
Four kinds of new aliphatic diols were synthesized by the ring opening reaction of glycolide with 1,4-butanediol, 1,6-hexanediol, 1,4-cyclohexanediol, or 1,4-cyclohexanedimethanol, a difunctional initiator, in the presence of stannous octoate catalyst. The resulting diols were melt-polymerized with succinic acid, adipic acid, or suberic acid at 170, 190, or $220^{circ}C$ to produce new sequentially ordered aliphatic polyesters and their corresponding polyesters with random structure. Their glass transition temperatures ($T_g$) ranged from -40 to $30^{circ}C$, The sequentially ordered polyesters prepared at $170^{cir}C$ had higher $T_g$ of 5 to $10^{circ}$ than the polyesters with rand()m structure produced at higher temperature. From in-vitro degradation test the sequentially ordered polyesters was shower in the rate of hydrolysis in a buffer solution than the polymers with random molecular structure.
Keywords
sequentially ordered aliphatic diol; biodegradable polyesters; transesterification; in-vitro degradation; degradation rate;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 R. Bhardwaj and J. Blanchard, J. Pharm., 170, 109 (1998)
2 H. Winet and J. Y. Bao, J. Biomed. Mater. Res., 40, 567 (1998)   DOI   ScienceOn
3 D. L. Wise, T. S. Fellmann, J. E. Sanderson, and R. L. Wentworth, Drug Carriers in Biology and Medicine, Academic Press, New York, p 237 (1979)
4 S. H. Lee, Y. K. Han, Y. H. Kim, and S. H. Kim, J. Polym. Sci.; Part A; Polym. Chem., 40, 2545 (2002)   DOI   ScienceOn
5 M. Okada, K. Tachikawa, and K. Aoi, J. Polym. Sci.; Part A: Polym. Chem., 35, 2729 (1997)   DOI   ScienceOn
6 C. Shih, J. Controlled Release, 834, 9 (1995)
7 J. P. Singhal, H. Singh, and A. R. Ray, Rev. Macromol. Chem., Phys., C28, 475 (1988)
8 D. Satyanarayana and P. R. Chatterji, Rev. Macromol. Chem. Phys., C33, 349 (1993)
9 P. Mainil-Varlet, R. Curtius, and S. Gogolewski, J. Biomed. Mater. Res., 36, 360 (1997)   DOI   ScienceOn
10 K. R. Hoffman and D. J. Casey, J. Polym. Sci.; Part A: Polym. Chem., 23, 1939 (1985)   DOI
11 M. Okada, Y. Okada, A. Tao, and K. Aoi, J. Appl. Polym. Sci., 62, 2257 (1996)   DOI   ScienceOn
12 S. H. Kim, Y. K. Han, H. Y. Kim, K. D. Ahn, and T. Chang, Makromol. Chem., 194, 3229 (1993)   DOI
13 K. Tomita and H. Ida, Polymer, 14, 55 (1973)   DOI   ScienceOn
14 K. J. Zhu, S. Bihai, and Y. Shilin, J. Polym. Sci.; Part A: Polym. Chem, 27, 2151 (1989)   DOI
15 D. Bendix, Polym. Degrad. Stab., 59, 129 (1998)   DOI
16 S. K. Na, B. G. Kong, C. Y. Choi, J. G. Kim, W. H. Hong, and J. W. Nab, Polyme(Korea), 29, 41 (2005)
17 H. R. Kricheldorf, T. Mang, and J. M. Jonte, Macromolecules, 17, 2173 (1984)   DOI
18 S. H. Lee, Y. K. Han, E. R. Kim, and S. S. Im, Polymer(Korea), 21, 926 (1997)
19 M. Vert and J. Mauduit, Biomaterials, 15, 1209 (1994)   DOI   ScienceOn