• Title/Summary/Keyword: 지반 굴착

Search Result 1,176, Processing Time 0.025 seconds

Inspecting Stablity of DSM method with Grouting on Tunnel Face using Chamber Test and Numericlal Analysis (토조실험과 수치해석을 이용한 막장면 그라우팅 DSM공법의 안정성 검토)

  • Kim, Young-Uk;Park, Young-Bok;Kim, Li-Sak;Kim, Nak-Kyeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.677-683
    • /
    • 2016
  • In urban areas, underground tunnel construction sites have spread widely to accommodate rapidly increasing traffic volume along with a high-degree economic growth. Earth tunneling might be adapted frequently for the underground space securing, and various tunneling methods have been developed to stabilize the tunnel face and crown. Among them, the DSM (divided shield method) is gaining popularity for its enhanced stability and construction efficiency. This method has its foundation from the Messer Shield method, which is one of the trenchless special tunneling methods. This study examined the effects of face reinforcement on construction the sequence through a large scale soil chamber test and numerical analyses. The chamber has a size of a 1/2 scale of the real tunnel. Surface settlements were measured according the tunneling process. Commercially available software, MIDAS GTS, was used for numerical analysis and its result was compared with the values obtained from the chamber test. The results of the study show that both settlements of the embanked soils and the stress of the tunnel girder are located within the safe criteria. Overall, this study provides basic data and the potential of using a reinforced tunnel face to enhance DSM applications.

Study on the Application of Semi-open cut Top-Down Construction for Framework (세미 오픈컷 역타공법의 현장적용에 관한 연구)

  • Sho, Kwang-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.2
    • /
    • pp.129-138
    • /
    • 2011
  • Construction methods for underground structure are classified as bottom-up, up-up, and top-down methods depending on the procedure of construction related to a superstructure. In top-down construction methods, building's main structure is built from the ground level downwards by sequentially alternating ground excavation and structure construction. In the mean time, the main structure is also used as supporting structure for earth-retaining wall, which results in the increased stability of the earth-retaining wall due to the minimized deformation in adjacent structures and surrounding grounds. In addition, the method makes it easy to secure a field for construction work in the downtown area by using each floor slabs as working spaces. However top-down construction method is often avoided since an excavation under the slab has low efficiency and difficult environment for work, and high cost compared with earth anchor method. This paper proposes a combined construction method where semi-open cut is selected as excavation work, slurry as earth -retaining wall and CWS as top-down construction method. In the case study targeted for an actual construction project, the proposed method is compared with existing top-down construction method in terms of economic feasibility, construction period and work efficiency. The proposed construction method results in increased work efficiency in the transportation of earth and sand, and steel frame erection, better quality management in PHD construction, and reduced construction period.

Empirical Rock Strength Logging in Boreholes Penetrating Sedimentary Formations (퇴적암에 대한 경험적 암석강도 추정에 대한 고찰)

  • Chang, Chan-Dong
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.3
    • /
    • pp.174-183
    • /
    • 2004
  • The knowledge of rock strength is important in assessing wellbore stability problems, effective sanding, and the estimation of in situ stress field. Numerous empirical equations that relate unconfined compressive strength of sedimentary rocks (sandstone, shale, and limestone, and dolomite) to physical properties (such as velocity, elastic modulus, and porosity) are collected and reviewed. These equations can be used to estimate rock strength from parameters measurable with geophysical well logs. Their ability to fit laboratory-measured strength and physical property data that were compiled from the literature is reviewed. While some equations work reasonably well (for example, some strength-porosity relationships for sandstone and shale), rock strength variations with individual physical property measurements scatter considerably, indicating that most of the empirical equations are not sufficiently generic to fit all the data published on rock strength and physical properties. This emphasizes the importance of local calibration before one utilizes any of the empirical relationships presented. Nonetheless, some reasonable correlations can be found between geophysical properties and rock strength that can be useful for applications related to wellhole stability where haying a lower bound estimate of in situ rock strength is especially useful.

Earthquake-Resistant Design of Cantilever Retaining-Walls with Sloped Base (기초슬래브의 밑면이 경사진 캔티레바식 옹벽의 내진설계)

  • Kim, Hong Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.87-98
    • /
    • 1990
  • The present Study dealt with the earthquake-resistant design of cantilever retaining walls supporting cohesionless soils. With design examples of three different types of cantilever retaining walls, the factors of safety against sliding were computed at various values of horizontal acceleration coefficient and compared with each other. The horizontal inertia effect due to the weights of concrete wall itself and a portion of backfill was taken into account in the analyses, and also Mononobe-Okabe pseudo-static solution method was modified to deal with various states different from limiting equilibrium state. From the analyses of safety against sliding, it was found that a cantilever retaining wall with sloped base was the most efficient type in earthquake resistant design. It was also found that by sloping the base, the width of the base slab could be reduced, resulting in the least volume of concrete, excavation and backfill as compared to the other types of walls. In the case of a cantilever retaining wall with sloped feel, the efficiency similar to that of a wall with sloped base could be expected under static loading as well as at relatively low level of earthquake loading. However, this efficiency became vanished with the increase of horizontal acceleration coefficient, since the rate of reduction in developed earth pressures on the heel became smaller. In addition, the design charts with different soil friction angles as well as with different earthquake resistant design criteria of safety factor against sliding were presented for the design of cantilever retaining walls sith sloped base.

  • PDF

A Study on the Finite Element Analysis and Management Criteria by Applying UPRS Method in the Subway Station (기존 지하철정거장 비개착공법 적용시 유한요소 해석과 관리기준에 관한 연구)

  • Cho, Byeong Joon
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.4
    • /
    • pp.43-52
    • /
    • 2019
  • To analyze the influence on the stability, resulting from application of upgrade pipe roof structure (UPRS) method to the structure existed under subway Station, physical properties of a ground, elasticity and elasto-plastic theories, including displacement analysis of finite elements, stress analysis of finite elements, displacement caused by steel pipe propulsion and internal excavation, and stress change in a steel pipe, were introduced. Then, the influence on structural stability when applying the UPRS method was compared and reviewed based on the construction management standard of the Ministry Land, Infrastructure and Transport and foreign sources, using numerical analysis with a model which assumes that each microelement divided into a structurally stable point consists of the connection of finite points. As a result of the finite element analysis, 7.21 mm maximum displacement, 1/3,950 angular displacement, 70.28 MPa bending compressive stress of steel pipe structure constructed with UPRS (non-excavation) method and 477.38 MPa maximum shear strength were within their allowable standards (25.00 mm, 1/500, 210.00 MPa and 120.00 MPa, respectively), and therefore, the results showed that the design and construction are stable.

A Decade's Experiences on the Hydrofracturing In-Situ Stress Measurement for Tunnel Construction in Korea (암반터널 설계를 위한 수압파쇄 초기지압 측정의 10여년 간의 경험)

  • Choe, Seong-Ung;Park, Chan;Sin, Jung-Ho;Sin, Hui-Sun
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2008.03a
    • /
    • pp.79-88
    • /
    • 2008
  • Since the hydraulic fracturing field testing method was introduced first to Korean geotechnical engineers in 1994, there have been lots of progresses in a hardware system as well as an interpretation tool. The hydrofracturing system of first generation was the pipe-line type, so it was not easy to handle. It had been modified to a wire-line system at their second generation. It was more compact one but it also needed an additional air-compressor. Our current system is much more compact and operated by all-in-one system, so it doesn't need an additional air-compressor. With a progress in a hardware system, the software for analyzing the in-situ stress regime has also been progressed. For example, the shut-in pressure, which is the most ambiguous parameter to be obtained from hydrofracturing pressure curves, can now be acquired automatically from the various methods. While the hardware and software for hydrofracturing tests are being developed during the last decade, the author could accumulate the field test results which can cover the almost whole area of South Korea. Currently these field data are used widely in a feasibility study or a preliminary design step for tunnel construction in Korea. Regarding the difficulties in a site selection and a test performance for the in-situ stress measurement at an off-shore area, the in-situ stress regime obtained from the field experiences in the land area can be used indirectly for the design of a sub-sea tunnel. From the hydrofracturing stress measurements, the trend of magnitude and direction of in-situ stress field was shown identically with the geological information in Korea.

  • PDF

Study on Driving Simulation of Spoke-type Shield TBM Considering Operation Conditions (TBM 운전조건을 고려한 스포크형 쉴드TBM의 굴진모사 연구)

  • Choi, Soon-Wook;Lee, Hyobum;Choi, Hangseok;Chang, Soo-Ho;Kang, Tae-Ho;Lee, Chulho
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.456-467
    • /
    • 2019
  • In this study, the discrete element method was used to simulate the excavation of spoke-type shield TBM. The horizontal stress coefficient was used for the ground to simulate the increase of the horizontal stress according to the depth, and the driving conditions were set based on the torque generated from the cutterhead of the TBM to excavate within the operating range. That is, when the value of the torque generated at the cutterhead exceeds the given operating condition, the speed of excavation is constantly reduced, and conversely, the method of increasing the speed of excavation is considered. The change speed of the excavation was given the minimum change requirement in consideration of the driver's review time, and the change was possible according to the excavation conditions. In order to use these conditions, the user-subroutine was considered separately, and the results show that the DEM model were able to analyze the excavation within the considered operating range.

Preliminary Analyses of the Deep Geoenvironmental Characteristics for the Deep Borehole Disposal of High-level Radioactive Waste in Korea (고준위 방사성폐기물 심부시추공 처분을 위한 국내 심부지질 환경특성 예비분석)

  • LEE, Jongyoul;LEE, Minsoo;CHOI, Heuijoo;KIM, Geonyoung;KIM, Kyungsu
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.2
    • /
    • pp.179-188
    • /
    • 2016
  • Spent fuels from nuclear power plants, as well as high-level radioactive waste from the recycling of spent fuels, should be safely isolated from human environment for an extremely long time. Recently, meaningful studies on the development of deep borehole radioactive waste disposal system in 3-5 km depth have been carried out in USA and some countries in Europe, due to great advance in deep borehole drilling technology. In this paper, domestic deep geoenvironmental characteristics are preliminarily investigated to analyze the applicability of deep borehole disposal technology in Korea. To do this, state-of-the art technologies in USA and some countries in Europe are reviewed, and geological and geothermal data from the deep boreholes for geothermal usage are analyzed. Based on the results on the crystalline rock depth, the geothermal gradient and the spent fuel types generated in Korea, a preliminary deep borehole concept including disposal canister and sealing system, is suggested.

Evaluation of Flexural Behavior of Hollow Prestressed Concrete Pile for Continuous Pile Wall (주열식 벽체용 중공 프리스트레스트 콘크리트 파일의 휨거동 평가)

  • Lee, Young-Geun;Jang, Min-Jun;Yoon, Soon-Jong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.20-27
    • /
    • 2014
  • In the construction site, various earth retaining systems are developed and applied to maintain stability of excavated area and structures. Among the methods, the underground continuous wall and the column-type diaphragm wall methods are especially used in construction site nearby buildings or roads. However, these methods have some disadvantages such as the difficulty of quality control and long curing time because these methods need to cast fresh concrete at the construction site. In addition, these methods are usually applied to the site for the temporary purpose. In this paper, we suggest precast hollow prestressed concrete pile for continuous pile wall system. To investigate the structural behavior of suggested pile, which is the main member of the suggested system, tests pertaining to the structural behavior and prestressing force applied in the pile are conducted. From the test results, it was found that the prestressing force measured is sufficient compared with the value obtained by the design equation and the cracking moment measured is 34% higher than the design value. In addition to the above, this precast hollow prestressed concrete pile has an additional safety margin that the maximum moment is 59.2% higher than the cracking moment which is one of the serviceability limits for the design of the system.

Estimation on Filling Performance of Thixotropic Grout for Increasing Front-Water Depth of Gravity-Type Quay Wall (중력식 안벽 구조물의 증심 시공을 위한 가소성 그라우트의 충진성능 평가)

  • Jang, Kyong-Pil;Ryu, Yong-Sun;Kwon, Seung-Hee;Han, Woon-Woo;Oh, Myong-Hak
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.169-177
    • /
    • 2017
  • Recently, as the size of transportation vessels has increased, there is a growing need for securing the front-water depths of existing port facilities. The method of deepening front-water depth is securing the depth of the port facility, and it is reinforced by grouting after excavating the rubble-mound to the required depth. The purpose of this study is to investigate the reinforcing performance and filling performance of thixotropic grout as a grouting material for reinforcing rubble-mound. Compressive strength tests were carried out for two types of thixotropic grout, and 5 specimens with a diameter of 400 mm and a height of 530 mm were manufactured and evaluated for filling performance. The required strength of reinforced rubble-mound required to ensure the safety of the structure is 6 MPa. All the thixotropic grouts used in this study were found to satisfy the required strength over 9 MPa at 7 days of age. As a result of visual observation of filling state of the filling performance test specimens, it was confirmed that the thixotropic grout was well filled up to the desired fillet height.