• Title/Summary/Keyword: 지반 강성

Search Result 710, Processing Time 0.023 seconds

Experiments on Interfacial Properties Between Ground and Shotcrete Lining (지반과 숏크리트 라이닝의 인터페이스 특성에 관한 실험적 연구)

  • 장수호;이석원;배규진;최순욱;박해균;김재권
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.79-86
    • /
    • 2004
  • Interfacial properties between rock mass and shotcrete play a significant role in the transmission of loads from the ground to shotcrete. These properties have a major effect on the behaviours of rock mass and shotcrete. They, however, have merely been considered in most of numerical analyses, and little care has been taken in identifying them. This paper aimed to identify interfacial properties including cohesion, tension, friction angle, shear stiffness, and normal stiffness, through direct shear tests as well as interface normal compression tests for shotcrete/rock cores obtained from a tunnel sidewall. Mechanical properties such as compressive strength and elastic modulus were also measured to compare them with the time-dependent variation of interfacial properties. Based on the experiments, interfacial properties between rock and shotcrete showed a significant time-dependent variation similar to those of its mechanical properties. In addition, the time-dependent behaviours of interfacial properties could be well regressed through exponential and logarithmic functions of time.

Verifications of the Impact-echo Technique for Integrity Evaluations of the Drilled Shaft Using Full Scale Tests (현장시험에 의한 충격반향기법의 말뚝 건전도 검사 적용성 평가)

  • Jung Gyungja;Cho Sung-Min;Kim Hong-Jong;Jung Jong-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.207-214
    • /
    • 2005
  • The reflected signals from the defects of a pile and the boundaries between the pile and soils are analyzed to evaluate the integrity of drilled shafts in the impact-echo test. Signals varied according to both of the stiffness ratio of the pile to defects and that of the pile to surrounding soils. Model tests using the small size pile in the laboratory and numerical analyses have limitations in finding the characteristics of the signals due to different stress wave characteristics and unreliable modelling for the interaction between the pile and soils respectively. Full scale testing piles which have artificial defects are installed by the actual construction method and they were used to investigate the characteristics of reflected signals according to defects and the stiffness ratios of the pile to soils around.

A Fundamental Study for a Dispersion Characteristics of Surface Waves on an Influence of Adjacent Structures (인접구조물의 영향에 의한 표면파 분산특성의 기초연구)

  • Cho, Mi-Ra;Cho, Sung-Ho;Kim, Bong-Chan;Kim, Suhk-Chol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4C
    • /
    • pp.239-245
    • /
    • 2008
  • In this study, a fundamental-level study was performed to establish knowledge-base for the development of optimal surface-wave method for urban areas with adjacent structures. First, theoretical modelling was performed to investigate the influence of adjacent structures on dispersion characteristics of surface waves. Later, the geotechnical sites with a concrete model of adjacent structure and a real subway box structure were tested by surface-wave method to investigate the influence of adjacent structures. The major influencing factors of adjacent structures on surface-wave propagation were direct distance between measurement array and adjacent structure, stiffness contrast between layers and type of seismic source.

Pseudostatic Analysis of Single Column/Shafts Considering Nonlinear Soil Behavior (지반의 비선형거동을 고려한 단일현장타설말뚝의 의사정적해석)

  • Lee, Joon-Kyu;Kim, Byung-Chul;Jeong, Sang-Seom;Song, Sung-Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1C
    • /
    • pp.31-40
    • /
    • 2008
  • This study presents the assessment of pseudostatic approach for obtaining the internal response of Single Column/Shaft subjected to earthquake loading. In numerical procedure, various lateral load transfer characteristics (p-y curve and Bi-linear curve) were used to model the nonlinear behavior of soil reactions including soil-pile interaction. The analysis using nonlinear soil model could estimate the seismic performance of soil-pile system, despite its relative simplicity. It was found that lateral behavior of single column/shaft obtained from the response displacement method was larger than those by seismic intensity method. To investigate the effects of soil-pile rigidity and pile head condition on the internal pile response, parametric studies were carried out for various soil models. The results from numerical analysis showed that lateral deflection was decreased with fixed condition of pile head and decreasing the soil-pile rigidity. The seismic analysis using Bi-linear model of JRA could reasonably predict the lateral behavior of Single Column/Shaft.

Scour Monitoring for Offshore Foundation using Electrical Resistivity and Shear Wave Tomography (전기비저항과 전단파 토모그래피를 이용한 해상 기초구조물의 세굴도 평가)

  • Park, Kiwon;Lee, Jongsub;Choi, Changho;Byun, Yonghoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.9
    • /
    • pp.37-45
    • /
    • 2014
  • An embedded length of monopile caused by a scouring should be evaluated to monitor the stability of offshore foundations, because offshore foundations are affected by horizontal load. The objective of this study is to evaluate the scouring around offshore foundation by using electrical resistivity and to estimate ground stiffness by using shear wave tomography. The electrical resistivity profiles and shear wave tomography were measured according to the scour depth of model ground prepared with sand and cement. Several electrodes and bender elements were used to measure the electrical resistivity and shear waves, respectively. The electrode sets are attached on the monopile surface and bender elements are arranged in $7{\times}7$ arrays by using nylone frames. The electrical resistivity profiles and shear wave tomography are acquired by laboratory experiment. Maximum scour depth was estimated by electrical resistivity profiles and the ground stiffness of model ground was estimated by shear wave tomography. This study suggests that the electrical resistivity profiles and shear wave tomography may be useful for monitoring the stability of the offshore foundations.

Sliding Conditions at the Interface between Soil and Underground Structure (지반과 지하구조물 경계의 미끄러짐 조건에 관한 연구)

  • 김대상
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.7-11
    • /
    • 2002
  • By focusing on the resonant vibration mode of soil-underground structure system, this paper obtained dynamic soil stiffness and easy sliding conditions at the interface between soil and underground structure. Multi-step method is employed to isolate two primary causes of soil-structure interaction. Mohr-Coulomb criterion is used to determine the threshold level of the sliding. To find out the conditions the interface slides easily, parametric studies are performed about the factors governing sliding, which are the size and location of underground structures, ground condition, the configuration of surface deposit and interface friction coefficients.

An Analysis of Deformation on Soft Clay Layer by Model Test (모형실험에 의한 연약점토지반의 변형해석)

  • 강병선
    • Geotechnical Engineering
    • /
    • v.4 no.4
    • /
    • pp.51-60
    • /
    • 1988
  • 기초지반에 대한 응력·변형률관계를 규명하기 위하여 소성론에 기초를 둔 구성방정식이 폭넓게 이용되고 있다. 본문은 성토나 강성기초와 같은 지반구조물을 연약점토지반에 축조하였을 때에 발생하는 변형에 관해 연구코저 한 것이다. 본 연구를 위하여 2차원모형토조를 제작, 재하실험한 시료를 재하실험을통하여 침하, 융기, 측방변위등을 측정하고 이들을 여러구함식과 비교고찰하였다. 구성식으로서는 한계상태개념에 근거를 둔 Cam-clay, Modified Cam-clay그리고 시간의존성을 고려한 탄·정감성 model인 Sakiguchi model을 이용하고 이들을 수치해를 통해 고찰하였다. 본 모형실험에 의하면 변형을 예측하는데 있어서 ModifiedICam-clay model이 Original Cam-clay"model 보다 실측치에 가까웠으며 또한 시간의존성을 고려한 탄·점견성 model인 Sekiguchi model'는 본 실험에서처럼 단기간의 실험에서는 변형의 creep조건을 만족시키지 못하므로 현장조건에 따라 잘- 판단하여 적용하여 야할 것으로 판단 된다.

  • PDF

A Study on Flexural Rigidity of Two-row Overlap Pile Wall for Deep Excavation Support (대심도 굴착면 지지를 위한 2열 겹침말뚝의 휨 강성에 관한 연구)

  • Choi, Won-Hyuk;La, You-Sung;Kim, Bum-Joo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.1
    • /
    • pp.33-43
    • /
    • 2018
  • Two-row Overlap Pile wall is a novel retaining wall system with high flexural rigidity and waterproofing for deep excavation support currently being developed in Korea. The Two-row Overlap Pile wall is constructed by making an overlap between consecutive four-axis (or two-axis) auger piles which themselves are overlapped and arranged in zigzag manner. In this study, the flexural rigidity of the Two-row Overlap Pile wall, including the effect of cross-sectional shape, was examined using both theoretical and numerical approaches. The results of investigation suggested that the Two-row Overlap Pile wall formed with two-row piles exhibit greatly higher flexural rigidity than conventional one-row pile walls such as Cast in place pile (CIP) and Secant pile wall (SPW), whereas the effect of overlap length between piles on the flexural rigidity is relatively minimal.

Shear Tests Under Constant Normal Stiffness for Granite-concrete Interface (화강암 절단면과 콘크리트 부착면에 대한 일정강성도 전단시험)

  • 조천환;이명환;유한규
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.1
    • /
    • pp.5-12
    • /
    • 2004
  • The purpose of this paper is to make an understanding of fundamental mechanism of shear behaviour between rock and concrete interfaces in the pile socketed into granite. The interface of pile socketed in rock can be modeled in laboratory tests by resolving the axi-symmetric pile situation into the two dimensional situation under CNS(constant normal stiffness) direct shear condition. In this paper, the granite core samples were used to simulate the interface condition of piles socketed in granite in our country. The samples were prepared in the laboratory to simulate field condition, roughness(angle and height), stress boundary condition, and then tested by CNS direct shear tests. This paper describes shearing behaviour of socket piles into domestic granite through the analysis of CNS test results. It was found out that the peak shear strength increases with the angle of asperity and CNS value, and also the dilation increases with the angle of asperity but decreases with the CNS value.

Derivation of Flexural Rigidity Formula for Two-row Overlap Pile Wall (2열 겹침주열말뚝의 휨 강성 산정식 유도)

  • Choi, Wonhyuk;Kim, Bumjoo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.109-118
    • /
    • 2018
  • Two-row overlap pile wall, currently under development for use in deep excavations, is a novel retaining structure designed to perform itself as a cutoff wall as well as a high-stiffness wall by constructing four overlapping piles arranged in zigzag manner at a time using a tetra-axis auger. This wall has a relatively complex cross-section, compared with other types of pile wall, which would make it difficult to determine design parameters related to cross-section. In this study, a flexural rigidity equation has been derived by analyzing both theoretically and statistically various wall cross-sections with different pile diameters and overlap lengths. The flexural rigidity equation was found to show the maximum error rate of 3%.